Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD

2012 ◽  
Vol 23 (49) ◽  
pp. 495201 ◽  
Author(s):  
K Bhatnagar ◽  
A Pathak ◽  
D Menke ◽  
P V Cornish ◽  
K Gangopadhyay ◽  
...  
Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.


2019 ◽  
Author(s):  
Lukas P Smaga ◽  
Nicholas W Pino ◽  
Gabriela E Ibarra ◽  
Vishnu Krishnamurthy ◽  
Jefferson Chan

Controlled light-mediated delivery of biological analytes enables the investigation of highly reactivity molecules within cellular systems. As many biological effects are concentration dependent, it is critical to determine the location, time, and quantity of analyte donation. In this work, we have developed the first photoactivatable donor for formaldehyde (FA). Our optimized photoactivatable donor, photoFAD-3, is equipped with a fluorescence readout that enables monitoring of FA release with a concomitant 139-fold fluorescence enhancement. Tuning of photostability and cellular retention enabled quantification of intracellular FA release through cell lysate calibration. Application of photoFAD-3 uncovered the concentration range necessary for arresting wound healing in live cells. This marks the first report where a photoactivatable donor for any analyte has been used to quantify intracellular release.


2020 ◽  
Vol 17 (6) ◽  
pp. 472-478
Author(s):  
Wei-tao Gong ◽  
Wei-dong Qu ◽  
Guiling Ning

Two pyridinium amide-based receptors L1 and L2 with a small difference of H-bond position of the amide have been synthesized and characterized. Interestingly, they exhibited a huge difference in sensing towards AcO- and H2PO4 -, respectively. Receptor L1 was found to be ‘naked-eye’ selective for AcO- anions, while receptor L2 showed clear fluorescence enhancement selective to H2PO4 - anion. The recognition ability has been established by fluorescence emission, UV-vis spectra, and 1HNMR titration.


1982 ◽  
Vol 28 (9) ◽  
pp. 1887-1893 ◽  
Author(s):  
D F Ranney ◽  
A J Quattrone

Abstract Several common metabolites and drugs in the serum in of patients with inflammatory, infectious, autoimmune, immunodeficient, neoplastic, and toxicant-induced diseases can produce artifactual suppression of the [methyl-3H]-thymidine assay, which is widely used to evaluate lymphocyte responsiveness. We have developed a sensitive, semiautomated, fluorescence-enhancement assay in which true immunosuppressors are measured in the presence of absence of such interfering substances. Peripheral blood lymphocytes are activated with mitogens in standard microtiter culture trays. Changes in lymphocyte DNA content are quantified with a reagent formulation containing mithramycin, the fluorescence of which is enhanced on binding to DNA in the presence of MgCl2. We solubilize cells within the intact microtiter tray by using an automated, inverted "Array Sonicator," and measure fluorescence with an automated, photon-counting fluorometer. With this system, immune response modulation can be accurately assessed in the presence of patients' sera and other complex test substances (e.g., supernates from hybridomas, fermentation vats, viral preparations, and macrophage cultures.


2021 ◽  
Vol 125 (2) ◽  
pp. 518-527
Author(s):  
Fangjia Fu ◽  
Kang Liao ◽  
Ziteng Liu ◽  
Daocheng Hong ◽  
Haitang Yang ◽  
...  

Author(s):  
Huilin Xie ◽  
Jingtian Zhang ◽  
Chao Chen ◽  
Feiyi Sun ◽  
Haixiang Liu ◽  
...  

A luminogenic bioprobe TPE-DMAB for simple and specific detection of peroxynitrite (ONOO−) has been developed. TPE-DMAB exhibits aggregation-induced emission (AIE) characteristic and shows fluorescence enhancement (up to 100-fold) upon cleavage...


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 520 ◽  
Author(s):  
Principia Dardano ◽  
Selene De Martino ◽  
Mario Battisti ◽  
Bruno Miranda ◽  
Ilaria Rea ◽  
...  

Microneedles (MNs) are an emerging technology in pharmaceutics and biomedicine, and are ready to be commercialized in the world market. However, solid microneedles only allow small doses and time-limited administration rates. Moreover, some well-known and already approved drugs need to be re-formulated when supplied by MNs. Instead, hollow microneedles (HMNs) allow for rapid, painless self-administrable microinjection of drugs in their standard formulation. Furthermore, body fluids can be easily extracted for analysis by a reverse use of HMNs, thus making them perfect for sensing issues and theranostics applications. The fabrication of HMNs usually requires several many-step processes, increasing the costs and consequently decreasing the commercial interest. Photolithography is a well-known fabrication technique in microelectronics and microfluidics that fabricates MNs. In this paper, authors show a proof of concept of a patented, easy and one-shot fabrication of two kinds of HMNs: (1) Symmetric HMNs with a “volcano” shape, made by using a photolithographic mask with an array of transparent symmetric rings; and (2) asymmetric HMNs with an oblique aperture, like standard hypodermic steel needles, made by using an array of transparent asymmetric rings, defined by two circles, which centers are slightly mismatched. Simulation of light propagation, fabrication process, and preliminary results on ink microinjection are presented.


Sign in / Sign up

Export Citation Format

Share Document