scholarly journals Atomic oxygen density determination in the effluent of the COST reference source using in situ effective lifetime measurements in the presence of a liquid interface

Author(s):  
Brayden Myers ◽  
Ed V Barnat ◽  
Katharina Stapelmann
Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Ayman M. Atta ◽  
Mohamed H. El-Newehy ◽  
Meera Moydeen Abdulhameed ◽  
Mohamed H. Wahby ◽  
Ahmed I. Hashem

The enhancement of both thermal and mechanical properties of epoxy materials using nanomaterials becomes a target in coating of the steel to protect it from aggressive environmental conditions for a long time, with reducing the cost. In this respect, the adhesion properties of the epoxy with the steel surfaces, and its proper superhyrophobicity to repel the seawater humidity, can be optimized via addition of green nanoparticles (NPs). In-situ modification of silver (Ag) and calcium carbonate (CaCO3) NPs with oleic acid (OA) was carried out during the formation of Ag−OA and CaCO3−OA, respectively. The epoxide oleic acid (EOA) was also used as capping for Ca−O3 NPs by in-situ method and epoxidation of Ag−OA NPs, too. The morphology, thermal stability, and the diameters of NPs, as well as their dispersion in organic solvent, were investigated. The effects of the prepared NPs on the exothermic curing of the epoxy resins in the presence of polyamines, flexibility or rigidity of epoxy coatings, wettability, and coatings durability in aggressive seawater environment were studied. The obtained results confirmed that the proper superhyrophobicity, coating adhesion, and thermal stability of the epoxy were improved after exposure to salt spray fog for 2000 h at 36 °C.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 275
Author(s):  
Chung Yiin Wong ◽  
Kunlanan Kiatkittipong ◽  
Worapon Kiatkittipong ◽  
Seteno K. O. Ntwampe ◽  
Man Kee Lam ◽  
...  

Oftentimes, the employment of entomoremediation to reduce organic wastes encounters ubiquitous shortcomings, i.e., ineffectiveness to valorize recalcitrant organics in wastes. Considering the cost-favorability, a fermentation process can be employed to facilitate the degradation of biopolymers into smaller organics, easing the subsequent entomoremediation process. However, the efficacy of in situ fermentation was found impeded by the black soldier fly larvae (BSFL) in the current study to reduce coconut endosperm waste (CEW). Indeed, by changing into ex situ fermentation, in which the fungal Rhizopus oligosporus was permitted to execute fermentation on CEW prior to the larval feeding, the reduction of CEW was significantly enhanced. In this regard, the waste reduction index of CEW by BSFL was almost doubled as opposed to in situ fermentation, even with the inoculation of merely 0.5 wt % of Rhizopus oligosporus. Moreover, with only 0.02 wt % of fungal inoculation size to execute the ex situ fermentation on CEW, it could spur BSFL growth by about 50%. Finally, from the statistical correlation study using principal component analysis, the presence of Rhizopus oligosporus in a range of 0.5–1.0 wt % was regarded as optimum to ferment CEW via ex situ mode, prior to the valorization by BSFL in reducing the CEW.


2013 ◽  
Vol 1536 ◽  
pp. 119-125 ◽  
Author(s):  
Guillaume Courtois ◽  
Bastien Bruneau ◽  
Igor P. Sobkowicz ◽  
Antoine Salomon ◽  
Pere Roca i Cabarrocas

ABSTRACTWe propose an implementation of the PCD technique to minority carrier effective lifetime assessment in crystalline silicon at 77K. We focus here on (n)-type, FZ, polished wafers passivated by a-Si:H deposited by PECVD at 200°C. The samples were immersed into liquid N2 contained in a beaker placed on a Sinton lifetime tester. Prior to be converted into lifetimes, data were corrected for the height shift induced by the beaker. One issue lied in obtaining the sum of carrier mobilities at 77K. From dark conductance measurements performed on the lifetime tester, we extracted an electron mobility of 1.1x104 cm².V-1.s-1 at 77K, the doping density being independently calculated in order to account for the freezing effect of dopants. This way, we could obtain lifetime curves with respect to the carrier density. Effective lifetimes obtained at 77K proved to be significantly lower than at RT and not to depend upon the doping of the a-Si:H layers. We were also able to experimentally verify the expected rise in the implied Voc, which, on symmetrically passivated wafers, went up from 0.72V at RT to 1.04V at 77K under 1 sun equivalent illumination.


The Precast industry is booming industry now a day, but then also the implementation ratio of precast member in residential construction work is not up to the mark. As we all know that precast having numerous advantages over the cast in situ construction method, for example it saves the total time of construction which indirectly reduces the cost of construction but still we are lagging behind in implementation of precast in it. In this research we have listed out some problem which can be cause of less implementation of precast in residential construction buildings. As discussed in paper, there are so many factors are affected on Implementation of Precast in Residential Construction Sector For example: Technical Issues and General Issues. In Technical Issues Joint stability problem during Erection, Standard size of precast element, Leakage Issues, Design change related problem, Requirement of Standard Rate per Panel, End user Profit, Additional Taxes, General Issues are: Transportation of Precast Element, Loading and Unloading problems, Transportation to sight, Storage Area, Skilled Labour Research has done and data is collected through Questionery survey, Field survey, and research survey.


Author(s):  
Yujie Li ◽  
Jie Wang ◽  
Shijie Wang ◽  
Di Li ◽  
Shan Song ◽  
...  

The immiscible two-phase flow behaves nonlinearly, and it is a challenging task to control and stabilize the liquid-liquid interface. Parallel flow forms under a proper balance between the driving force, the friction resistance, and the interfacial tension. The liquid-solid interaction as well as the liquid-liquid interaction plays an important role in manipulating the liquid-liquid interface. With vacuum-driven flow, long and stable parallel flow is possible to be obtained in oil-water systems and can be used for fabricating micro- and nanomaterials. Ultra-small Cu nanoparticles of 4~10 nm were synthesized continuously through chemical reactions taking place on the interface. This makes it possible for in situ synthesis of conductive nanoink avoiding oxidation. Well-controlled interface reactions can also be used to produce ultra-long sub-micro Cu wires up to 10 mm at room temperature. This method provided new and simple additive fabrication methods for making integrated microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document