A dimethyl methylphonate sensor based on HFIPPH modified SWCNTs

2022 ◽  
Author(s):  
Haiyang Wu ◽  
Yubin Yuan ◽  
Qiang Wu ◽  
Xiangrui Bu ◽  
Long Hu ◽  
...  

Abstract In order to meet the requirements of ultra-fast real-time monitoring of sarin simulator with high sensitivity and selectivity, it is of great significance to develop high performance dimethyl methylphonate (DMMP) sensor. Herein, we proposed a DMMP sensor based on p-hexafluoroisopropanol phenyl (HFIPPH) modified self-assembled single-walled carbon nanotubes (SWCNTs) with field effect transistor (FET) structure. The self-assembly method provides a 4 nanometres thick and micron sized SWCNT channel, with high selectivity to DMMP. The proposed SWCNTs-HFIPPH based sensor exhibits remarkably higher response to DMMP than bare SWCNT based gas sensor within only few seconds. The gas sensing response of SWCNTs-HFIPPH based sensor for 1ppm DMMP is 18.2%, and the response time is about 10 seconds. What's more, the gas sensor we proposed here shows excellent selectivity and reproducibility, and the limitation of detection is as low as ppb level. The proposed method lays the foundation for miniaturization and integration of DMMP sensors, expecting to develop detection system for practical sarin sensing application.

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 438 ◽  
Author(s):  
Bowei Zhao ◽  
Tai Sun ◽  
Xi Zhou ◽  
Xiangzhi Liu ◽  
Xiaoxia Li ◽  
...  

Combining functional nanomaterials composite with three-dimensional graphene (3DG) is a promising strategy for improving the properties of stress sensors. However, it is difficult to realize stress sensors with both a wide measurement range and a high sensitivity. In this paper, graphene-SiO2 balls (GSB) were composed into 3DG in order to solve this problem. In detail, the GSB were prepared by chemical vapor deposition (CVD) method, and then were dispersed with graphene oxide (GO) solution to synthesize GSB-combined 3DG composite foam (GSBF) through one-step hydrothermal reduction self-assembly method. The prepared GSBF owes excellent mechanical (95% recoverable strain) and electrical conductivity (0.458 S/cm). Furthermore, it exhibits a broad sensing range (0–10 kPa) and ultrahigh sensitivity (0.14 kPa−1). In addition, the water droplet experiment demonstrates that GSBF is a competitive candidate of high-performance materials for stress sensors.


2014 ◽  
Vol 492 ◽  
pp. 297-300
Author(s):  
Liu Fang Yang ◽  
Yu Lin Wang ◽  
Qin Hui Wang

Using zinc chloride solution and ammonia (25%) as raw material, with the presence of surfactant (CTAB), the microrod ZnO material was synthesized by the hydrothermal method. The phase composition and microstructure of the prepared ZnO material were characterized with XRD and SEM. The results show that the ZnO material possesses a high degree of crystallization, its diameter below 4 μm, and its length about 35 μm. The gas sensing property of gas sensor fabricated with the prepared ZnO material was evaluated via the static volumetric method. At the operating temperature of 200°C, the gas sensor has high sensitivity and selectivity to CH3COCH3.The gas sensing characterization was also discussed.


2017 ◽  
Vol 922 ◽  
pp. 012023
Author(s):  
Hu Li ◽  
Ishtiaq Hassan Wani ◽  
Anumol Ashok ◽  
Yuanyuan Han ◽  
S. Hassan M. Jafri ◽  
...  

Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4425
Author(s):  
Ana María Pineda-Reyes ◽  
María R. Herrera-Rivera ◽  
Hugo Rojas-Chávez ◽  
Heriberto Cruz-Martínez ◽  
Dora I. Medina

Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating temperature. Recently, different strategies have been implemented to improve the sensitivity and selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing applications. First, experimental studies on ZnO doped with transition metals, boron group elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing theoretical and combined experimental–theoretical studies. Finally, we present the conclusions and some perspectives for future investigations in the context of advancements in CO sensing using doped ZnO, which include room-temperature gas sensing.


2021 ◽  
Author(s):  
Salomé Forel ◽  
Leandro Sacco ◽  
Alice Castan ◽  
Ileana Florea ◽  
Costel Sorin Cojocaru

We design a gas sensor by combining two SWCNT-FET devices in an inverter configuration enabling a better system miniaturization together with a reduction of power consumption and ease of data processing.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5618-5628
Author(s):  
Wenkai Jiang ◽  
Xinwei Chen ◽  
Tao Wang ◽  
Bolong Li ◽  
Min Zeng ◽  
...  

A high performance gas sensor based on a metal phthalocyanine/graphene quantum dot hybrid material was fabricated for NO2 detection at room-temperature.


2005 ◽  
Vol 486-487 ◽  
pp. 485-488 ◽  
Author(s):  
Hong Quang Nguyen ◽  
Mai Van Trinh ◽  
Jeung Soo Huh

The effect of operating temperature on characteristics of single-walled carbon nanotubes (SWNT) based gas sensor was investigated. SWNT-based sensor was fabricated from SWNT powder (Iljin Nanotech, Korea) by screen-printing method. SWNT powder (30 mg, AP grade) was dispersed into 0.78 gram a-terpineol (Aldrich) by ultrasonic vibration for 1 hour then stirred manually for 1 hour to increase adhesion. From this condensed solution, a thick film of SWNT was printed onto alumina substrates. The film then was sintered at 300oC for 2 hours to remove residual impurities. Upon exposure to some gases such as nitrogen, ammonia or nitric oxide, resistance of the sensor dramatically changes due to gas adsorption. In our experiments, SWNT-based sensor was employed to detect NH3 gas in N2 ambience. After saturated of N2, the sensor exposes to NH3 with various concentrations (from 5 ppm to 100 ppm, diluted by N2 as carrier gas). This sensor exhibits a fast response, high sensitivity but slow recovery at room temperature. By heating at high temperature and increasing the flow-rate of carrier gas, NH3 gas desorbs easily and recovery of the sensor improved. The heating also influenced the characteristics of sensors such as response and reproducibility. Other special changes in electric property of SWNT-based sensor caused by heating are also discussed.


2021 ◽  
Vol 13 (4) ◽  
pp. 724-733
Author(s):  
Ahmad Umar ◽  
Ahmed A. Ibrahim ◽  
Rajesh Kumar ◽  
Hassan Algadi ◽  
Hasan Albargi ◽  
...  

In this paper, star-fruit-shaped CuO microstructures were hydrothermally synthesized and subsequently characterized through different techniques to understand morphological, compositional, structural, crystal, optical and vibrational properties. The formation of star-fruit-shaped structures along with some polygonal and spherical nanostructures was confirmed by FESEM analysis. XRD data and Raman spectrum confirmed the monoclinic tenorite crystalline phase of the CuO with crystal size 17.61 nm. Star-fruit-shaped CuO microstructures were examined for ethanol gas sensing behavior at various operating temperatures and concentrations. The gas response of 135% was observed at the optimal temperature of 225 °C. Due to excellent selectivity, stability and re-usability, the as-fabricated sensor based on star-fruit-shaped CuO micro-structures may be explored for future toxic gas sensor applications.


Sign in / Sign up

Export Citation Format

Share Document