scholarly journals Fundamentals and working mechanisms of artificial muscles with textile application in the loop

Author(s):  
Henriette Grellmann ◽  
Felix Lohse ◽  
Vikram Kamble ◽  
Hans Winger ◽  
Andreas Nocke ◽  
...  

Abstract Natural muscles, that convert chemical energy derived from glucose into mechanical and thermal energy, are capable of performing complex movements. This natural muscle power was the only way to perform mechanical work in a targeted manner for millions of years. In the course of thousands of years of technical development, mankind has succeeded in harnessing various physical and chemical phenomena to drive specific mechanical processes. Wind and water power, steam and combustion engines or electric motors are just a few examples. However, in order to make the diversity and flexibility of natural motion patterns usable for machines, attempts have been made for many years to develop artificial muscles. These man-made smart materials are able to react to environmental conditions by significantly changing their shape or size. For the design of effective artificial muscles that closely resemble the natural original, the usage of textile technology offers great advantages. By means of weaving, individual actuators can be parallelized, which enables the transmission of greater forces. By knitting the maximum stretching performance can be enhanced by combining the intrinsic stretching capacity of the actuators with the structural-geometric stretching capacity of the fabric. Furthermore textile production techniques are well suited for the requirement-specific, individual placement of actuators in order to achieve the optimal geometry for the respective needs in every load case. Ongoing technical development has created fiber based and non-fibrous artificial muscles that are capable of mimicking and even out-performing their biological prodigy. Meanwhile, a large number of partly similar, but also very different functional principles and configurations were developed, each with its own specific characteristics. This paper provides an overview of the relevant and most promising technical approaches for realising artificial muscles, classifies them to specific material types and explains the mechanisms used as well as the possible textile applications.

2016 ◽  
Vol 97 ◽  
pp. 93-99
Author(s):  
Jin Lian Hu ◽  
Harishkumar Narayana

Materials, structures and systems, responsive to an external stimulus are smart and adaptive to our human demands. Among smart materials, polymers with shape memory effect are at the forefront of research leading to comprehensive publications and wide applications. In this paper, we extend the concept of shape memory polymers to stress memory ones, which have been discovered recently. Like shape memory, stress memory represents a phenomenon where the stress in a polymer can be programmed, stored and retrieved reversibly with an external stimulus such as temperature and magnetic field. Stress memory may be mistaken as the recovery stress which was studied quite broadly. Our further investigation also reveals that stress memory is quite different from recovery stress containing multi-components including elastic and viscoelastic forces in addition to possible memory stress. Stress memory could be used into applications such as sensors, pressure garments, massage devices, electronic skins and artificial muscles. The current revelation of stress memory potentials is emanated from an authentic application of memory fibres, films, and foams in the smart compression devices for the management of chronic and therapeutic disorders.


2020 ◽  
Vol 7 ◽  
Author(s):  
M. Franke ◽  
A. Ehrenhofer ◽  
S. Lahiri ◽  
E.-F. M. Henke ◽  
T. Wallmersperger ◽  
...  

Natural motion types found in skeletal and muscular systems of vertebrate animals inspire researchers to transfer this ability into engineered motion, which is highly desired in robotic systems. Dielectric elastomer actuators (DEAs) have shown promising capabilities as artificial muscles for driving such structures, as they are soft, lightweight, and can generate large strokes. For maximum performance, dielectric elastomer membranes need to be sufficiently pre-stretched. This fact is challenging, because it is difficult to integrate pre-stretched membranes into entirely soft systems, since the stored strain energy can significantly deform soft elements. Here, we present a soft robotic structure, possessing a bioinspired skeleton integrated into a soft body element, driven by an antagonistic pair of DEA artificial muscles, that enable the robot bending. In its equilibrium state, the setup maintains optimum isotropic pre-stretch. The robot itself has a length of 60 mm and is based on a flexible silicone body, possessing embedded transverse 3D printed struts. These rigid bone-like elements lead to an anisotropic bending stiffness, which only allows bending in one plane while maintaining the DEA's necessary pre-stretch in the other planes. The bones, therefore, define the degrees of freedom and stabilize the system. The DEAs are manufactured by aerosol deposition of a carbon-silicone-composite ink onto a stretchable membrane that is heat cured. Afterwards, the actuators are bonded to the top and bottom of the silicone body. The robotic structure shows large and defined bimorph bending curvature and operates in static as well as dynamic motion. Our experiments describe the influence of membrane pre-stretch and varied stiffness of the silicone body on the static and dynamic bending displacement, resonance frequencies and blocking forces. We also present an analytical model based on the Classical Laminate Theory for the identification of the main influencing parameters. Due to the simple design and processing, our new concept of a bioinspired DEA based robotic structure, with skeletal and muscular reinforcement, offers a wide range of robotic application.


2011 ◽  
Vol 410 ◽  
pp. 25-25
Author(s):  
Jin Song Leng

Stimulus-active polymers can change their shapes with respect to configuration or dimension upon exposure to a particular stimulus such as heat, electricity, light, magnetic, solvent and pH value. These unique characteristics enable stimulus-active polymers to be used in a myriad of fields, including clothing manufacturing, automobile engineering, medical treatment, and aerospace engineering. Stimulus-active polymers can be applied in smart textiles and apparels, intelligent medical instruments and auxiliaries, artificial muscles, biomimetic devices, heat shrinkable materials for electronics packaging, micro-electro-mechanical systems, self-deployable sun sails in spacecrafts, miniature manipulator, actuators and sensors, and many more. This paper presents some recent progress of soft smart materials and their applications. Special emphasis is focused upon shape memory polymer (SMP), electro-active polymer (EAP) for aerospace engineering such as space deployable structures and morphing aircraft, which has highlighted the need for development of these materials. A detailed overview of development in these smart soft materials, of which the undergoing and future applications are used in adaptive structures and active control, is presented. The paper concludes with a short discussion for multi-functional soft smart materials and their composites that are expected to extend the range of development and applications available to the related researches and engineers.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4246 ◽  
Author(s):  
Yujie Chen ◽  
Chi Chen ◽  
Hafeez Ur Rehman ◽  
Xu Zheng ◽  
Hua Li ◽  
...  

Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Maxim K. Rabchinskii ◽  
Victor V. Sysoev ◽  
Sergei A. Ryzhkov ◽  
Ilya A. Eliseyev ◽  
Dina Yu. Stolyarova ◽  
...  

Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials.


2010 ◽  
Vol 654-656 ◽  
pp. 2079-2082
Author(s):  
Christine M. Scala ◽  
Matthew E. Ibrahim ◽  
Alan R. Wilson ◽  
Darren P. Edwards ◽  
V. Tan Truong

This paper overviews some recent S&T innovations in smart materials and structures at the Australian Defence Science and Technology Organisation (DSTO) under a Corporate Enabling Research Program (CERP) on Signatures, Materials and Energy. The CERP program includes development and transitioning of technology across the maritime, air and land domains, with the major focus of the smart materials program component being to increase the safety, availability and maintainability of Defence assets. Three specific examples are provided of the smart materials and structures program, ranging across the spectrum of technology readiness from new concept phase to technology transitioning, viz.: (i) Advances in smart sensing for prognostics-based platform management; (ii) Fabrication of nanostructured and ultrafine grained materials through top-down severe plastic deformation processing of bulk materials; (iii) Innovative application of carbon nanotubes/conducting polymers as artificial muscles for low-power propulsion and control of small autonomous underwater systems. In each case, the DSTO effort is underpinned by strong university or industry linkages to deliver challenging interdisciplinary S&T.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Manmatha Mahato ◽  
Rassoul Tabassian ◽  
Van Hiep Nguyen ◽  
Saewoong Oh ◽  
Sanghee Nam ◽  
...  

Abstract In the field of bioinspired soft robotics, to accomplish sophisticated tasks in human fingers, electroactive artificial muscles are under development. However, most existing actuators show a lack of high bending displacement and irregular response characteristics under low input voltages. Here, based on metal free covalent triazine frameworks (CTFs), we report an electro-ionic soft actuator that shows high bending deformation under ultralow input voltages that can be implemented as a soft robotic touch finger on fragile displays. The as-synthesized CTFs, derived from a polymer of intrinsic microporosity (PIM-1), were combined with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) to make a flexible electrode for a high-performance electro-ionic soft actuator. The proposed soft touch finger showed high peak-to-peak displacement of 17.0 mm under ultralow square voltage of ±0.5 V, with 0.1 Hz frequency and 4 times reduced phase delay in harmonic response compared with that of a pure PEDOT-PSS-based actuator. The significant actuation performance is mainly due to the unique physical and chemical configurations of CTFs electrode with highly porous and electrically conjugated networks. On a fragile display, the developed soft robotic touch finger array was successfully used to perform soft touching, similar to that of a real human finger; device was used to accomplish a precise task, playing electronic piano.


2010 ◽  
Vol 34 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Alfredo Ramírez-García ◽  
Lorenzo Leija ◽  
Roberto Muñoz

The motion of the current prostheses is sequential and does not allow natural movements. In this work, complex natural motion patterns from a healthy upper limb were characterized in order to be emulated for a trans-humeral prosthesis with three degrees of freedom at the elbow. Firstly, it was necessary to define the prosthesis workspace, which means to establish a relationship using an artificial neural network (ANN), between the arm-forearm (3-D) angles allowed by the prosthesis, and its actuators length. The 3-D angles were measured between the forearm and each axis of the reference system attached at the elbow. Secondly, five activities of daily living (ADLs) were analyzed by means of the elbow flexion (EF), the forearm prono-supination (FPS) and the 3-D angles, from healthy subjects, by using a video-based motion analysis system. The 3-D angles were fed to the prosthesis model (ANN) in order to analyze which ADLs could be emulated by the prosthesis. As a result, a prosthesis kinematics approximation was obtained. In conclusion, in spite of the innovative mechanical configuration of the actuators, it was possible to carry out only three of the five ADLs considered. Future work will include improvement of the mechanical configuration of the prosthesis to have greater range of motion.


2021 ◽  
Vol 6 (2) ◽  
pp. 401-426
Author(s):  
Paola Andrea Castiblanco ◽  
José Luis Ramirez ◽  
Astrid Rubiano

The use of soft robotics and smart materials for the design of devices that help the population in different tasks has gained a rising interest. Medicine is one of the fields where its implementation has shown significant advances. However, there are works related to applications, directed to the human body especially in replacement of devices for the upper limb. This document aims to explore the state of the art relating to the study of soft robotics, the implementation of smart materials, and the artificial muscles in the design or construction of hand prostheses or robotic devices analogous to the human hand.


Sign in / Sign up

Export Citation Format

Share Document