Electrical Efficiency of SECE-based Interfaces for Piezoelectric Vibration Energy Harvesting

Author(s):  
Adrien Morel ◽  
Alexis Brenes ◽  
David Gibus ◽  
Gaël Pillonnet ◽  
Adrien Badel

Abstract Piezoelectric energy harvesting (PEH) interfaces have been widely investigated during the last decades in order to maximize the harvested power. Among the energy extraction circuits proposed in the literature, some of the most effective ones consist of extracting the electric charges from the piezoelectric elements in a synchronous way with the vibrations and within a very short portion of the vibration period (SECE, SECPE, FTSECE, etc.). For these strategies, most previous studies take the electrical efficiency (i.e., the electrical losses between the energy extracted from the piezoelectric element and the energy which is finally transferred in a storage element) into account in an ad-hoc and case-by-case manner. In this brief, we propose a unified analysis that applies to model the electrical efficiency of these SECE-based strategies taking into account losses introduced by the electrical interface. We identify the main loss mechanisms by demonstrating that the electrical efficiency mainly varies with two parameters: the quality factor of the electrical interface and the voltage inversion ratio of the considered strategy. Measurements on the FTSECE strategy show that our model predicts the stored power with a good accuracy and allows a better optimization of the harvesting interface (up to 5.4 times more stored power at off-resonance frequencies, and 30% larger harvesting bandwidth).

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


2019 ◽  
Vol 20 (1) ◽  
pp. 90-99
Author(s):  
Aliza Aini Md Ralib ◽  
Nur Wafa Asyiqin Zulfakher ◽  
Rosminazuin Ab Rahim ◽  
Nor Farahidah Za'bah ◽  
Noor Hazrin Hany Mohamad Hanif

Vibration energy harvesting has been progressively developed in the advancement of technology and widely used by a lot of researchers around the world. There is a very high demand for energy scavenging around the world due to it being cheaper in price, possibly miniaturized within a system, long lasting, and environmentally friendly. The conventional battery is hazardous to the environment and has a shorter operating lifespan. Therefore, ambient vibration energy serves as an alternative that can replace the battery because it can be integrated and compatible to micro-electromechanical systems. This paper presents the design and analysis of a MEMS piezoelectric energy harvester, which is a vibration energy harvesting type. The energy harvester was formed using Lead Zicronate Titanate (PZT-5A) as the piezoelectric thin film, silicon as the substrate layer and structural steel as the electrode layer. The resonance frequency will provide the maximum output power, maximum output voltage and maximum displacement of vibration. The operating mode also plays an important role to generate larger output voltage with less displacement of cantilever. Some designs also have been studied by varying height and length of piezoelectric materials. Hence, this project will demonstrate the simulation of a MEMS piezoelectric device for a low power electronic performance. Simulation results show PZT-5A piezoelectric energy with a length of 31 mm and height of 0.16 mm generates maximum output voltage of 7.435 V and maximum output power of 2.30 mW at the resonance frequency of 40 Hz. ABSTRAK: Penuaian tenaga getaran telah berkembang secara pesat dalam kemajuan teknologi dan telah digunakan secara meluas oleh ramai penyelidik di seluruh dunia. Terdapat permintaan yang sangat tinggi di seluruh dunia terhadap penuaian tenaga kerana harganya yang lebih murah, bersaiz kecil dalam satu sistem, tahan lama dan mesra alam. Manakala, bateri konvensional adalah berbahaya bagi alam sekitar dan mempunyai jangka hayat yang lebih pendek. Oleh itu, getaran tenaga dari persekitaran lebih sesuai sebagai alternatif kepada bateri kerana ia mudah diintegrasikan dan serasi dengan sistem mikroelektromekanikal. Kertas kerja ini  membentangkan reka bentuk dan analisis tenaga piezoelektrik MEMS iaitu salah satu jenis penuaian tenaga getaran. Penuai tenaga ini dibentuk menggunakan Lead Zicronate Titanate (PZT-5A) sebagai lapisan filem tipis piezoelektrik, silikon sebagai lapisan substrat dan keluli struktur sebagai lapisan elektrod. Frekuensi resonans akan memberikan hasil tenaga maksima, voltan tenaga maksima dan getaran jarak maksima. Mod pengendalian juga memainkan peranan penting bagi menghasilkan tenaga yang lebih besar. Reka bentuk yang mempunyai ketinggian dan panjang berlainan juga telah diuji dengan menggunakan bahan piezoelektrik yang sama. Oleh itu, projek ini akan menghasilkan simulasi piezoelektrik MEMS yang sesuai digunakan bagi alat elektronik berkuasa rendah. Hasil simulasi menunjukkan dengan panjang 31 mm dan ketinggian 0.16 mm, piezoelektrik PZT ini menghasilkan voltan maksima sebanyak 7.435 V dan tenaga output maksima 2.30 mW pada frekuensi resonans 40 Hz.


Author(s):  
Saman Farhangdoust ◽  
Gary Georgeson ◽  
Jeong-Beom Ihn ◽  
Armin Mehrabi

Abstract These days, piezoelectric energy harvesting (PEH) is introduced as one of the clean and renewable energy sources for powering the self-powered sensors utilized for wireless condition monitoring of structures. However, low efficiency is the biggest drawback of the PEHs. This paper introduces an innovative embedded metamaterial subframe (MetaSub) patch as a practical solution to address the low throughput limitation of conventional PEHs whose host structure has already been constructed or installed. To evaluate the performance of the embedded MetaSub patch (EMSP), a cantilever beam is considered as the host structure in this study. The EMSP transfers the auxetic behavior to the piezoelectric element (PZT) wherever substituting a regular beam with an auxetic beam is either impracticable or suboptimal. The concept of the EMSP is numerically validated, and the COMSOL Multiphysics software was employed to investigate its performance when a cantilever beam is subjected to different amplitude and frequency. The FEM results demonstrate that the harvesting power in cases that use the EMSP can be amplified up to 5.5 times compared to a piezoelectric cantilever energy harvester without patch. This paper opens up a great potential of using EMSP for different types of energy harvesting systems in biomedical, acoustics, civil, electrical, aerospace, and mechanical engineering applications.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 845 ◽  
Author(s):  
Abdolreza Pasharavesh ◽  
Reza Moheimani ◽  
Hamid Dalir

The deliberate introduction of nonlinearities is widely used as an effective technique for the bandwidth broadening of conventional linear energy harvesting devices. This approach not only results in a more uniform behavior of the output power within a wider frequency band through bending the resonance response, but also contributes to energy harvesting from low-frequency excitations by activation of superharmonic resonances. This article investigates the nonlinear dynamics of a monostable piezoelectric harvester under a self-powered electromagnetic actuation. To this end, the governing nonlinear partial differential equations of the proposed harvester are order-reduced and solved by means of the perturbation method of multiple scales. The results indicate that, according to the excitation amplitude and load resistance, different responses can be distinguished at the primary resonance. The system behavior may involve the traditional bending of response curves, Hopf bifurcations, and instability regions. Furthermore, an order-two superharmonic resonance is observed, which is activated at lower excitations in comparison to order-three conventional resonances of the Duffing-type resonator. This secondary resonance makes it possible to extract considerable amounts of power at fractions of natural frequency, which is very beneficial in micro-electro-mechanical systems (MEMS)-based harvesters with generally high resonance frequencies. The extracted power in both primary and superharmonic resonances are analytically calculated, then verified by a numerical solution where a good agreement is observed between the results.


Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices and wireless sensors due to high power density, easy integration, simple configuration and other outstanding features. Among piezoelectric vibration energy harvesting structures, cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model of mesoscale piezoelectric energy harvester is proposed, which focuses on the multi-directional vibration collection and low resonant frequency. To verify the output performances of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit with high power collection rate is adopted as collection system. This harvester is beneficial to the further application of devices working with continuous vibrations and low power requirements.


Author(s):  
Mohamed M. R. El-Hebeary ◽  
Mustafa H. Arafa ◽  
Said M. Megahed

The focus of the present work is on the design of plate structures for vibration energy harvesting from two closely-spaced modes of vibration. The work is motivated by the quest to design resonators that respond to variable-frequency sources of base motion. The geometry of two-dimensional structures, such as trapezoidal and V-shaped plates, is explored to obtain two closely-spaced harvestable vibration modes to scavenge energy across a broader bandwidth. To this end, an electromagnetic energy harvester in the form of a base excited plate is proposed. The plate carries tip magnets that oscillate past stationary coils to generate power from the first two modes of vibration. The plate dynamic behavior is governed by its geometry and placement of the magnets on its tip. An effort is made to optimize the system configuration so as to control the spacing between the resonance frequencies while efficiently harvesting energy from both modes. Findings of the present work are verified both numerically and experimentally.


Author(s):  
Tian-Bing Xu ◽  
Emilie J. Siochi ◽  
Jin Ho Kang ◽  
Lei Zuo ◽  
Wanlu Zhou ◽  
...  

In this paper, we report the study of a “33” longitudinal mode, piezoelectric PZT ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for broader bandwidth high-performance piezoelectric energy harvesting transducers (PEHTs). The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm × 7.0 mm × 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficients (EPC, deff) of the PZT-stack is about 1 × 105 pC/N at off-resonance frequencies and 1.39 × 106 pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The EPC do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2,479 Hz with a dynamic force of 11.6 Nrms, and 7.6 mW of electrical power was generated at a frequency of 2,114 Hz with 1 Nrms dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 Nrms dynamic force. A theoretical model of energy harvesting for the PZT-Stack was established. The modeled results matched well with experimental measurements. This study demonstrated that structures with high EPC enable PEHTs to harvest more electrical energy from mechanical vibrations or motions, suggesting an effective design for high-performance low-profile PEHTs with potential applications in military, aerospace, and portable electronics. In addition, this study provides a route for using piezoelectric multilayer stacks for active or semi-active adaptive control to damp, harvest or transform unwanted vibrations into useful electrical energy.


Abstract. Topology optimisation has been used to design a piezoelectric energy harvester capable of harvesting the vibration present on a helicopter gearbox. The gearbox vibrations, with frequencies in the kilo-hertz range and having amplitudes of 10-100g (where g = 9.81 m/s2), are generated by gear-meshing within the transmission. These accelerations, large in amplitude and high in frequency, are ideal sources for vibration energy harvesting, with the harvested power potentially used to power autonomous condition-based-maintenance systems. This paper will discuss the first and simplest of the harvesters that were designed and manufactured, i.e. a 0.51 mm thick spring steel cantilever that uses a Pz27 piezoceramic transducer, which is sensitive to 1900 Hz gearbox vibrations and can produce 300 µW from a 2g host acceleration.


Sign in / Sign up

Export Citation Format

Share Document