Advances in thermoelectric (GeTe) x (AgSbTe2)100-x

2021 ◽  
Author(s):  
Hongxia Liu ◽  
Xinyue Zhang ◽  
Wen Li ◽  
Yanzhong Pei

Abstract The (GeTe) x (AgSbTe2)100-x alloys, also called TAGS-x in short, have long been demonstrated as a promising candidate for thermoelectric applications with successful services as the p-type leg in radioisotope thermoelectric generators for space missions. This largely stems from the complex band structure for a superior electronic performance and strong anharmonicity for a low lattice thermal conductivity. Utilization of the proven strategies including carrier concentration optimization, band and defects engineering, an extraordinary thermoelectric figure of merit, zT, has been achieved in TAGS-based alloys. Here, crystal structure, band structure, microstructure, synthesis techniques and thermoelectric transport properties of TAGS-based alloys, as well as successful strategies for manipulating the thermoelectric performance, are surveyed with opportunities for further advancements. These strategies involved are believed to be in principle applicable for advancing many other thermoelectrics.

2015 ◽  
Vol 08 (02) ◽  
pp. 1550028 ◽  
Author(s):  
Qilong Guo ◽  
Sijun Luo

We herein report a feasible approach to improve the thermoelectric performance of p-type ZnSb compound by Zn content regulation. It is found that Zn vacancies formed by Zn deficiency not only efficiently enhance the electrical conductivity due to the improved hole concentration but also markedly lower the lattice thermal conductivity on account of the reinforced point defect scattering of phonons. The ZnSb compound with a nominal 3 mol.% Zn deficiency shows a maximum thermoelectric figure of merit ZT of ~ 0.8 at 700 K which is a ~ 60% improvement over the pristine sample. The strategies of further enhancing the performance of ZnSb -based material have been discussed.


1997 ◽  
Vol 478 ◽  
Author(s):  
T. Caillat ◽  
A. Borshchevsky ◽  
J. -P. Fleurial

Abstractβ-Zn4Sb3 was recently identified at the Jet Propulsion Laboratory as a new high performance p-type thermoelectric material with a maximum dimensionless thermoelectric figure of merit ZT of 1.4 at a temperature of 673K. A usual approach, used for many state-of-the-art thermoelectric materials, to further improve ZT values is to alloy β-Zn4Sb3 with isostructural compounds because of the expected decrease in lattice thermal conductivity. We have grown Zn4−xCdxSb3 crystals with 0.2≤x<1.2 and measured their thermal conductivity from 10 to 500K. The thermal conductivity values of Zn4−xCdxSb3 alloys are significantly lower than those measured for β-Zn4Sb3 and are comparable to its calculated minimum thermal conductivity. A strong atomic disorder is believed to be primarily at the origin of the very low thermal conductivity of these materials which are also fairly good electrical conductors and are therefore excellent candidates for thermoelectric applications.


Author(s):  
Yuhong Huang ◽  
Xuanhong Zhong ◽  
Hongkuan Yuan ◽  
Hong Chen

Abstract Thermoelectric performance of MoSi2As4 monolayer is investigated using density functional theory combined with Boltzmann transport theoy. The maximal power factors of n- and p-type by PBE (HSE06) functional are 7.73 (48.31) and 32.84 (30.50) mW m-1 K-2 at the temperature of 1200 K, respectively. The lattice thermal conductivity is less than 30 W m-1 K-1 above 800 K. The thermoelectric figure of merit can reach 0.33 (0.58) and 0.90 (0.81) using PBE (HSE06) functional for n- and p-type under appropriate carrier concentration at 1200K, respectively. Thus, the p-type MoSi2As4 monolayer is predicted to be a potential candidate for high-temperature thermoelectric applications.


2020 ◽  
Vol 10 (14) ◽  
pp. 4963 ◽  
Author(s):  
Ki Wook Bae ◽  
Jeong Yun Hwang ◽  
Sang-il Kim ◽  
Hyung Mo Jeong ◽  
Sunuk Kim ◽  
...  

Herein we report a significantly reduced lattice thermal conductivity of Sb-doped Hf0.35Zr0.35Ti0.3NiSn half-Heusler alloys with sub-micron grains (grain size of ~300 nm). Polycrystalline bulks of Hf0.35Zr0.35Ti0.3NiSn1−xSbx (x = 0.01, 0.02, 0.03) with a complete single half-Heusler phase are prepared using temperature-regulated melt spinning and subsequent spark plasma sintering without a long annealing process. In these submicron-grained bulks, a very low lattice thermal conductivity value of ~2.4 W m−1 K−1 is obtained at 300 K due to the intensified phonon scatterings by highly dense grain boundaries and point-defects (Zr and Ti substituted at Hf-sites). A maximum thermoelectric figure of merit, zT, of 0.5 at 800 K is obtained in Hf0.35Zr0.35Ti0.3NiSn0.99Sb0.01.


2009 ◽  
Vol 1218 ◽  
Author(s):  
Chun-I Wu ◽  
Steven N Girard ◽  
Joseph Sootsman ◽  
Edward Timm ◽  
Jennifer Ni ◽  
...  

AbstractFor the material (Pb0.95Sn0.05Te)1-x(PbS)x nanostructuring from nucleation and growth and spinodal decomposition were reported to enhance the thermoelectric figure of merit over bulk PbTe, producing ZT of 1.1 - 1.4 at 650 K for x = 0.08[1]. Thermoelectric modules made from (Pb0.95Sn0.05Te)1-x(PbS)x materials with various hot-side metal electrodes were fabricated and tested. Short circuit current was measured on unicouples of Pb0.95Sn0.05Te – PbS 8% (n-type) legs and Ag0.9Pb9Sn9Sb0.6Te20 (p-type) legs over 10 (A) for a hot side temperature of 870K, and a cold side of 300K. Hot pressed (Pb0.95Sn0.05Te)1-x(PbS)x materials were also investigated for module fabrication. Investigations of the electrical properties of hot-pressed (Pb0.95Sn0.05Te)1-x(PbS)x materials are presented along with the latest advancements in the fabrication and characteristics of modules based on the processing of these materials.


2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.


2013 ◽  
Vol 06 (05) ◽  
pp. 1340007 ◽  
Author(s):  
CELINE BARRETEAU ◽  
LIN PAN ◽  
YAN-LING PEI ◽  
LI-DONG ZHAO ◽  
DAVID BERARDAN ◽  
...  

During the past two years, we have underlined the great potential of p-type oxychalcogenides, with parent compound BiCuSeO , for thermoelectric applications in the medium temperature range (400–650°C). These materials, which do not contain lead and are less expensive than Te containing materials, exhibit large thermoelectric figure of merit, exceeding 1 in a wide temperature range, mainly due to an intrinsically very low thermal conductivity. This paper summarizes the main chemical and crystallographic features of this system, as well as the thermoelectric properties. It also gives new directions to improve these properties, and discuss the potential of these materials for wide scale applications in thermoelectric conversion system in the medium temperature range.


2007 ◽  
Vol 46 (No. 27) ◽  
pp. L673-L675 ◽  
Author(s):  
Takeyuki Sekimoto ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

RSC Advances ◽  
2016 ◽  
Vol 6 (115) ◽  
pp. 114825-114829 ◽  
Author(s):  
Tessera Alemneh Wubieneh ◽  
Cheng-Lung Chen ◽  
Pai Chun Wei ◽  
Szu-Yuan Chen ◽  
Yang-Yuan Chen

Ge doping enables to enhance the thermoelectric figure of merit of SnSe..


Author(s):  
А.А. Шабалдин ◽  
П.П. Константинов ◽  
Д.А. Курдюков ◽  
Л.Н. Лукьянова ◽  
А.Ю. Самунин ◽  
...  

AbstractNanocomposite thermoelectrics based on Bi_0.45Sb_1.55Te_2.985 solid solution of p -type conductivity are fabricated by the hot pressing of nanopowders of this solid solution with the addition of SiO_2 microparticles. Investigations of the thermoelectric properties show that the thermoelectric power of the nanocomposites increases in a wide temperature range of 80–420 K, while the thermal conductivity considerably decreases at 80–320 K, which, despite a decrease in the electrical conductivity, leads to an increase in the thermoelectric efficiency in the nanostructured material without the SiO_2 addition by almost 50% (at 300 K). When adding SiO_2, the efficiency decreases. The initial thermoelectric fabricated without nanostructuring, in which the maximal thermoelectric figure of merit ZT = 1 at 390 K, is most efficient at temperatures above 350 K.


Sign in / Sign up

Export Citation Format

Share Document