Measurement of Hubble constant: were differences in secondary distance indicators apparent as early as the HST Key Project?

2021 ◽  
Vol 21 (3) ◽  
pp. 061
Author(s):  
Rahul Kumar Thakur ◽  
Shashikant Gupta ◽  
Rahul Nigam ◽  
PK Thiruvikraman
2020 ◽  
Vol 500 (3) ◽  
pp. 3728-3742
Author(s):  
Thomas M Sedgwick ◽  
Chris A Collins ◽  
Ivan K Baldry ◽  
Philip A James

ABSTRACT The discrepancy between estimates of the Hubble constant (H0) measured from local (z ≲  0.1) scales and from scales of the sound horizon is a crucial problem in modern cosmology. Peculiar velocities (vpec) of standard candle distance indicators can systematically affect local H0 measurements. We here use 2MRS galaxies to measure the local galaxy density field, finding a notable z  <  0.05 underdensity in the SGC-6dFGS region of 27  ±  2 per cent. However, no strong evidence for a ‘Local Void’ pertaining to the full 2MRS sky coverage is found. Galaxy densities are used to measure a density parameter, Δϕ+−, which we introduce as a proxy for vpec that quantifies density gradients along a supernova (SN) line of sight. Δϕ+− is found to correlate with local H0 estimates from 88 Pantheon Type Ia supernovae (SNe Ia; 0.02  <  z  <  0.05). Density structures on scales of ∼50 Mpc are found to correlate strongest with H0 estimates in both the observational data and in mock data from the MDPL2-Galacticus simulation. Using trends of H0 with Δϕ+−, we can correct for the effects of density structure on local H0 estimates, even in the presence of biased vpec. However, the difference in the inferred H0 estimate with and without the peculiar velocity correction is limited to < 0.1  per cent. We conclude that accounting for environmentally induced peculiar velocities of SN Ia host galaxies does not resolve the tension between local and CMB-derived H0 estimates.


1983 ◽  
Vol 6 ◽  
pp. 209-216 ◽  
Author(s):  
J.A. Graham

In talking about the overall distance scale of the Universe and the Hubble Constant, the Magellanic Clouds are good places to start. They are stellar systems large enough to contain stars, clusters and nebulae of all types, covering a wide age range. With modern telescopes and detectors, we are able to observe stars from the very bright down to those fainter intrinsically than our own Sun. From comparative studies, we may thus establish our basic calibrations of bright objects before moving out to measure the Universe at large. At the same time, the fact that both Magellanic Clouds are independently evolving galaxies, enables us to separate the effects of stellar age and chemical evolution on the calibrations that we make.


1989 ◽  
Vol 106 ◽  
pp. 35-50 ◽  
Author(s):  
Harvey B. Richer

AbstractStudy of the late-type stellar content in external galaxies provides numerous clues for the theory of stellar evolution, for star-formation scenarios in galaxies, and for proper models of the luminosity evolution of galaxies which are then used in cosmological studies. In addition, these late-type stars can be used as distance indicators themselves and yield a local value of the Hubble constant consistent with recent Cepheid determinations.


1974 ◽  
Vol 63 ◽  
pp. 47-59
Author(s):  
G. A. Tammann

A preliminary report is given of recent work with A. Sandage on the Hubble constant. Through a chain of distance indicators in Sc and Ir galaxies (cepheids, brightest stars, H iiregions, and luminosity classes) the distance scale is carried beyond any possible local anisotropy of the velocity field. Special care is taken to allow for the dependence of the intrinsic properties of the distance indicators on the size of the parent galaxy, and for the effect of the Malmquist correction. H0 is found to be 55 ± 7 km s-1 Mpc-1; within the errors no systematic changes with distance were found.A formal value of the deceleration constant q0 = 1 ± 1 was recently derived by Sandage (1972a) and Sandage and Hardy (1973). The most important correction to this value is probably the luminosity evolution of galaxies, which tends to push q0 below 0.5. The ensuing evidence for an open universe is also favored by independent arguments.


1999 ◽  
Vol 183 ◽  
pp. 68-68
Author(s):  
Koichi Iwamoto ◽  
Ken'Ichi Nomoto

The large luminosity (MV ≈ −19 ∼ −20) and the homogeneity in light curves and spectra of Type Ia supernovae(SNe Ia) have led to their use as distance indicators ultimately to determine the Hubble constant (H0). However, an increasing number of the observed samples from intermediate- and high-z (z ∼ 0.1 − 1) SN Ia survey projects(Hamuy et al. 1996, Perlmutter et al. 1997) have shown that there is a significant dispersion in the maximum brightness (∼ 0.4 mag) and the brighter-slower correlation between the brightness and the postmaximum decline rate, which was first pointed out by Phillips(1993). By taking the correlation into account, Hamuy et al.(1996) gave an estimate of H0 within the error bars half as much as previous ones.


2020 ◽  
Vol 29 (14) ◽  
pp. 2030014
Author(s):  
Elcio Abdalla ◽  
Alessandro Marins

The most important problem in fundamental physics is the description of the contents of the Universe. Today, we know that 95% thereof is totally unknown. Two thirds of that amount is the mysterious Dark Energy described in an interesting and important review [E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753]. We briefly extend here the ideas contained in that review including the more general Dark Sector, that is, Dark Matter and Dark Energy, eventually composing a new physical Sector. Understanding the Dark Sector with precision is paramount for us to be able to understand all the other cosmological parameters comprehensively as modifications of the modeling could lead to potential biases of inferred parameters of the model, such as measurements of the Hubble constant and distance indicators such as the Baryon Acoustic Oscillations. We discuss several modern methods of observation that can disentangle the different possible descriptions of the Dark Sector. The possible applications of some theoretical developments are also included in this paper as well as a more thorough evaluation of new observational techniques at lower frequencies and gravitational waves.


2002 ◽  
Vol 12 ◽  
pp. 688 ◽  
Author(s):  
P.M. Garnavich ◽  
K. Stanek

AbstractThe ideal distance indicator would be a standard candle abundant enough to provide many examples within reach of parallax measurements and sufficiently bright to be seen out to Local Group galaxies. The red clump stars closely match this description. These are the metal rich equivalent of the better known horizontal branch stars, and their brightness dispersion is only 0.2 mag (one sigma) in the Solar neighborhood. Using Hipparcos to calibrate a large, local sample, the red clump method has been used to measure accurate distances to the Galactic center (Paczyński & Stanek 1998), M31 (Stanek & Garnavich 1998), LMC (Udalski et al. 1998; Stanek et al. 1998; Udalski 1999) and some clusters in our Galaxy (e.g. 47Tuc: Kaluzny et al. 1998). As with all the distance indicators, the main worry lies in the possible systematics of the method, in particular, the brightness dependence on the stellar metallicity and age. These dependences have come under close scrutiny and, indeed, the population effects on the red clump brightness appear small and calibratable. Perhaps the most controversial result from the red clump method is the estimation of a “short” distance to the Large Magellanic Cloud (Udalski et al. 1998; Stanek, Zaritsky & Harris 1998; Udalski 2000). This distance to the LMC is shorter by 12% than the “standard” value, and has very important implications for the Cepheid distance scale and the determination of the Hubble constant.


2021 ◽  
Vol 66 (11) ◽  
pp. 955
Author(s):  
S.L. Parnovsky

The bias in the determination of the Hubble parameter and the Hubble constant in the modern Universe is discussed. It could appear due to the statistical processing of data on the redshifts of galaxies and the estimated distances based on some statistical relations with limited accuracy. This causes a number of effects leading to either underestimation or overestimation of the Hubble parameter when using any methods of statistical processing, primarily the least squares method (LSM). The value of the Hubble constant is underestimated when processing a whole sample; when the sample is constrained by distance, especially when constrained from above. Moreover, it is significantly overestimated due to the data selection. The bias significantly exceeds the values of the erro ofr the Hubble constant calculated by the LSM formulae. These effects are demonstrated both analytically and using Monte Carlo simulations, which introduce deviations in the velocities and estimated distances to the original dataset described by the Hubble law. The characteristics of the deviations are similar to real observations. Errors in the estimated distances are up to 20%. They lead to the fact that, when processing the same mock sample using LSM, it is possible to obtain an estimate of the Hubble constant from 96% of the true value when processing the entire sample to 110% when processing the subsample with distances limited from above. The impact of these effects can lead to a bias in the Hubble constant obtained from real data and an overestimation of the accuracy of determining this value. This may call into question the accuracy of determining the Hubble constant and can significantly reduce the tension between the values obtained from the observations in the early and modern Universes, which were actively discussed during the last year.


Sign in / Sign up

Export Citation Format

Share Document