scholarly journals The dark sector cosmology

2020 ◽  
Vol 29 (14) ◽  
pp. 2030014
Author(s):  
Elcio Abdalla ◽  
Alessandro Marins

The most important problem in fundamental physics is the description of the contents of the Universe. Today, we know that 95% thereof is totally unknown. Two thirds of that amount is the mysterious Dark Energy described in an interesting and important review [E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753]. We briefly extend here the ideas contained in that review including the more general Dark Sector, that is, Dark Matter and Dark Energy, eventually composing a new physical Sector. Understanding the Dark Sector with precision is paramount for us to be able to understand all the other cosmological parameters comprehensively as modifications of the modeling could lead to potential biases of inferred parameters of the model, such as measurements of the Hubble constant and distance indicators such as the Baryon Acoustic Oscillations. We discuss several modern methods of observation that can disentangle the different possible descriptions of the Dark Sector. The possible applications of some theoretical developments are also included in this paper as well as a more thorough evaluation of new observational techniques at lower frequencies and gravitational waves.

2020 ◽  
Vol 497 (3) ◽  
pp. 3191-3203 ◽  
Author(s):  
Shulei Cao ◽  
Joseph Ryan ◽  
Bharat Ratra

ABSTRACT We use H ii starburst galaxy apparent magnitude measurements to constrain cosmological parameters in six cosmological models. A joint analysis of H ii galaxy, quasar angular size, baryon acoustic oscillations peak length scale, and Hubble parameter measurements result in relatively model-independent and restrictive estimates of the current values of the non-relativistic matter density parameter $\Omega _{\rm m_0}$ and the Hubble constant H0. These estimates favour a 2.0–3.4σ (depending on cosmological model) lower H0 than what is measured from the local expansion rate. The combined data are consistent with dark energy being a cosmological constant and with flat spatial hypersurfaces, but do not strongly rule out mild dark energy dynamics or slightly non-flat spatial geometries.


2019 ◽  
Vol 35 (04) ◽  
pp. 2050002
Author(s):  
G. K. Goswami ◽  
Anirudh Pradhan ◽  
A. Beesham

In this paper, we have presented a model of the Friedmann–Lemaitre–Robertson–Walker (FLRW) universe filled with matter and dark energy (DE) fluids by assuming an ansatz that deceleration parameter (DP) is a linear function of the Hubble constant. This results in a time-dependent DP having decelerating–accelerating transition phase of the universe. This is a quintessence model [Formula: see text]. The quintessence phase remains for the period [Formula: see text]. The model is shown to satisfy current observational constraints. Various cosmological parameters relating to the history of the universe have been investigated.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950106
Author(s):  
Deng Wang

With the recent progresses on the Type II supernovae, we attempt to investigate whether there does exist new physics beyond the standard cosmological paradigm, i.e. the cosmological constant [Formula: see text] plus cold dark matter ([Formula: see text]CDM). Constraining four alternative cosmological models with a data combination of currently available Type II supernovae calibrated by the standard color method, Type Ia supernovae, baryon acoustic oscillations (BAO), cosmic microwave background (CMB) and cosmic chronometers, at the [Formula: see text] confidence level, we find that (i) a spatially flat universe is supported for the nonflat [Formula: see text]CDM model; (ii) the constrained equation-of-state of dark energy [Formula: see text] is consistent with the [Formula: see text]CDM hypothesis for the [Formula: see text]CDM model, where [Formula: see text] is a free parameter; (iii) for the decaying vacuum model, there is no evidence of interaction between dark matter and dark energy in the dark sector of the universe; (iv) there is also no hint of dynamical dark energy for the dark energy density-parametrization scenario. It is very obvious that a larger Type II supernovae sample is required if we expect to draw definitive conclusions about the formation and evolution of the universe.


2018 ◽  
Vol 33 (34) ◽  
pp. 1845015
Author(s):  
Dragan Huterer

First, I summarize the current status of dark energy, including methods to use data to separate between general-relativity and modified-gravity scenarios for the accelerating universe. Then, I discuss recent results from the Dark Energy Survey, currently the world’s leading experiment mapping large-scale structure in the universe. Year-1 DES analysis performed in 2017 included the combination of galaxy clustering, cosmic shear, and their cross-correlation to impose constraints on key cosmological parameters, while upcoming Year-3 and -5 analyses will dramatically improve those constraints. I discuss some of the challenges in this complex analysis, its results, and the more general path forward toward better understanding of dark matter and dark energy in the universe. I also comment on the foremost tension in the field of cosmology today: between local measurements of the Hubble constant from type Ia supernovae, and global measurements from the cosmic microwave background anisotropies.


2019 ◽  
Vol 633 ◽  
pp. A19 ◽  
Author(s):  
Hans Böhringer ◽  
Gayoung Chon ◽  
Chris A. Collins

For precision cosmological studies it is important to know the local properties of the reference point from which we observe the Universe. Particularly for the determination of the Hubble constant with low-redshift distance indicators, the values observed depend on the average matter density within the distance range covered. In this study we used the spatial distribution of galaxy clusters to map the matter density distribution in the local Universe. The study is based on our CLASSIX galaxy cluster survey, which is highly complete and well characterised, where galaxy clusters are detected by their X-ray emission. In total, 1653 galaxy clusters outside the “zone of avoidance” fulfil the selection criteria and are involved in this study. We find a local underdensity in the cluster distribution of about 30–60% which extends about 85 Mpc to the north and ∼170 Mpc to the south. We study the density distribution as a function of redshift in detail in several regions in the sky. For three regions for which the galaxy density distribution has previously been studied, we find good agreement between the density distribution of clusters and galaxies. Correcting for the bias in the cluster distribution we infer an underdensity in the matter distribution of about −30 ± 15% (−20 ± 10%) in a region with a radius of about 100 (∼140) Mpc. Calculating the probability of finding such an underdensity through structure formation theory in a ΛCDM universe with concordance cosmological parameters, we find a probability characterised by σ-values of 1.3 − 3.7. This indicates low probabilities, but with values of around 10% at the lower uncertainty limit, the existence of an underdensity cannot be ruled out. Inside this underdensity, the observed Hubble parameter will be larger by about 5.5 +2.1−2.8%, which explains part of the discrepancy between the locally measured value of H0 compared to the value of the Hubble parameter inferred from the Planck observations of cosmic microwave background anisotropies. If distance indicators outside the local underdensity are included, as in many modern analyses, this effect is diluted.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


2017 ◽  
Vol 32 (28) ◽  
pp. 1750152
Author(s):  
Emiliano Marachlian ◽  
I. E. Sánchez G. ◽  
Osvaldo P. Santillán

A cosmological scenario where dark matter interacts with a variable vacuum energy for a spatially flat Friedmann–Robertson–Walker (FRW) spacetime is proposed and analyzed to show that with a linear equation of state and a particular interaction in the dark sector it is possible to get a model of an Emergent Universe. In addition, the viability of two particular models is studied by taking into account the recent observations. The updated observational Hubble data and the JLA supernovae data are used in order to constraint the cosmological parameters of the models and estimate the amount of dark energy in the radiation era. It is shown that the two models fulfil the severe bounds of [Formula: see text] at the 2[Formula: see text] level of Planck.


2018 ◽  
Vol 168 ◽  
pp. 01008 ◽  
Author(s):  
Rong-Gen Cai ◽  
Tao Yang

The gravitational waves from compact binary systems are viewed as a standard siren to probe the evolution of the universe. This paper summarizes the potential and ability to use the gravitational waves to constrain the cosmological parameters and the dark sector interaction in the Gaussian process methodology. After briefly introducing the method to reconstruct the dark sector interaction by the Gaussian process, the concept of standard sirens and the analysis of reconstructing the dark sector interaction with LISA are outlined. Furthermore, we estimate the constraint ability of the gravitational waves on cosmological parameters with ET. The numerical methods we use are Gaussian process and the Markov-Chain Monte-Carlo. Finally, we also forecast the improvements of the abilities to constrain the cosmological parameters with ET and LISA combined with the Planck.


1983 ◽  
Vol 6 ◽  
pp. 209-216 ◽  
Author(s):  
J.A. Graham

In talking about the overall distance scale of the Universe and the Hubble Constant, the Magellanic Clouds are good places to start. They are stellar systems large enough to contain stars, clusters and nebulae of all types, covering a wide age range. With modern telescopes and detectors, we are able to observe stars from the very bright down to those fainter intrinsically than our own Sun. From comparative studies, we may thus establish our basic calibrations of bright objects before moving out to measure the Universe at large. At the same time, the fact that both Magellanic Clouds are independently evolving galaxies, enables us to separate the effects of stellar age and chemical evolution on the calibrations that we make.


2019 ◽  
Vol 34 (34) ◽  
pp. 1950276 ◽  
Author(s):  
H. Hossienkhani ◽  
H. Yousefi ◽  
N. Azimi

We study the possibly existing anisotropy in the accelerating expansion Universe with various supernovae data, the baryon acoustic oscillation and the observational Hubble data. We present combined results from these probes, deriving constraints on the equation of state (EoS), [Formula: see text], of dark energy (DE) and its energy density in the Universe. We fit the cosmological parameters simultaneously employing the maximum likelihood analysis. By combining data and considering anisotropy effects, we find that the EoS of DE are [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] within [Formula: see text] confidence level. Finally, introducing an anisotropy appears to improve the fit to observations with respect to that provided by an isotropic [Formula: see text]CDM model.


Sign in / Sign up

Export Citation Format

Share Document