scholarly journals The Heat Transfer from Fined Perforated Pipe Improved due to Nano-Fluid

2021 ◽  
Vol 1973 (1) ◽  
pp. 012075
Author(s):  
Ali Sami Sallal ◽  
Ghassan F. Smaisim ◽  
S.M. Thahab
2015 ◽  
Vol 813-814 ◽  
pp. 685-689
Author(s):  
M. Vijay Anand Marimuthu ◽  
B. Venkatraman ◽  
S. Kandhasamy

This paper investigates the performance and characteristics of saw tooth shape micro channel in the theoretical level. If the conduct area of the nano fluid increases the heat transfer also increases. The performance curve has drawn Reynolds number against nusselt number, heat transfer co efficient. Pressure drop plays an important role in this device. If pressure drop is high the heat transfer increases. The result in this experiment shows clearly that the heat transfer is optimized.


Author(s):  
Eyup Kocak ◽  
Ulku Ece Ayli ◽  
Hasmet Turkoglu

Abstract The aim of this paper is to introduce and discuss prediction power of the multiple regression technique, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods for predicting the forced convection heat transfer characteristics of a turbulent nano fluid flow a pipe. Water and Al2O3 mixture is used as the nano fluid. Utilizing FLUENT software, numerical computations were performed with volume fraction ranging between 0.3% and 5%, particle diameter ranging between 20 and 140 nm and Reynolds number ranging between 7000 and 21000. Based on the computationally obtained results, a correlation is developed for Nusselt number using the multiple regression method. Also, based on the CFD results different ANN architectures with different number of neurons in the hidden layers and several training algorithms (Levenberg-Marquardt, Bayesian Regularization, Scaled Conjugate Gradient) are tested to find the best ANN architecture. In addition, Adaptive Neuro-fuzzy Interface System (ANFIS) is also used to predict the Nusselt number. In the ANFIS, number of clusters, exponential factor and Membership Function (MF) type are optimized. The results obtained from multiple regression correlation, ANN and ANFIS were compared. According to the obtained results, ANFIS is a powerful tool with a R2 of 0.9987 for predictions.


2018 ◽  
Vol 22 (2) ◽  
pp. 1149-1161 ◽  
Author(s):  
Maria Anish ◽  
Balakrishnan Kanimozh

The heat produced in the nuclear reactor due to fission reaction must be kept in control or else it will damage the components in the reactor core. Nuclear plants are using water for the operation dissipation of heat. Instead, some chemical substances which have higher heat transfer coefficient and high thermal conductivity. This experiment aims to find out how efficiently a nanofluid can dissipate heat from the reactor vault. The most commonly used nanofluid is Al2O3 nanoparticle with water or ethylene as base fluid. The Al2O3 has good thermal property and it is easily available. In addition, it can be stabilized in various PH levels. The nanofluid is fed into the reactor?s coolant circuit. The various temperature distribution leads to different characteristic curve that occurs on various valve condition leading to a detailed study on how temperature distribution carries throughout the cooling circuit. As a combination of Al2O3 as a nanoparticle and therminol 55 as base fluid are used for the heat transfer process. The Al2O3 nanoparticle is mixed in therminol 55 at 0.05 vol.% concentration. Numerical analysis on the reactor vault model was carried out by using ABAQUS and the experimental results were compared with numerical results.


2021 ◽  
Vol 2039 (1) ◽  
pp. 012001
Author(s):  
P D Alekseev ◽  
Yu L Leukhin

Abstract A study of the aerodynamics and heat transfer of a jet modular recuperator with a change in its geometric characteristics has been carried out. The influence of the in-line and staggered arrangement of the blowing holes, as well as the diameter of the perforated pipe is considered. In all considered variants, the number of holes, their diameter and gas flow rate through the recuperator remained unchanged. Numerical modeling of the problem was carried out in a three-dimensional setting using the ANSYS Fluent 15.0 software package. It was found that with the in-line arrangement of the blowing holes, secondary flows are formed between their longitudinal rows in the form of swirling jets of opposite rotation directed towards the outlet section of the recuperative device, through which the main part of the heated air flows out. With the staggered arrangement of the blowing holes, the formation of spiral vortices is disturbed, the air flow is carried out along the entire cross section of the annular channel, increasing the drift effect of the flow on the impact jets, which leads to a decrease in the intensity of heat transfer and its uniformity along the length of the working surface. An increase in the diameter of the inner perforated pipe leads to a decrease in the drift effect of the cocurrent flow on the jets, an increase in the distribution uniformity of the heat flux along the length of the heat transfer surface, and an increase in the heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document