scholarly journals Effect of thermal mass of insulated and non-insulated walls on building thermal performance and potential energy saving

2021 ◽  
Vol 2042 (1) ◽  
pp. 012159
Author(s):  
M Haj Hussein ◽  
S Monna ◽  
A Juaidi ◽  
A Barlet ◽  
M Baba ◽  
...  

Abstract The presented study aims to evaluate the effect of thermal mass in heavyweight construction in residential buildings in Palestine on indoor thermal environment using a building performance simulation tool. The most used residential building types, shapes and sizes were used as typical models for indoor environment performance simulation. The paper used a sensitivity analysis for four different scenarios according to the location of thermal insulation in the wall for two climatic zones, when no heating and cooling was used. The building material’s thermal properties, infiltration, activities, time schedule, electric lighting and glazing selection were based on onsite studies. The results show that the internal thermal mass of the studied buildings influences their thermal performance and future potential energy demand for heating and cooling. Buildings with insulation positioned on the outside, with high thermal mass and high thermal time constant showed the best thermal performance for different climatic zones, whereas buildings without thermal insulation or with insulation from the inside showed the worst thermal performance. The position of thermal insulation will affect potential energy demand for heating and cooling in the residential buildings.

2016 ◽  
Vol 692 ◽  
pp. 82-93 ◽  
Author(s):  
A Madhumathi ◽  
S. Radhakrishnan ◽  
R. Shanthipriya

Green roof application on real residential buildings in Tamilnadu, India is very limited and mostly concentrated in major cities mainly for visual purposes. There is not enough research has been conducted to boost up the benefits of green roof system in Warm and Humid weather in India. Green roofs have the potential to improve the thermal performance of a roofing system through shading, insulation, evapotranspiration and thermal mass, thus reducing a building’s energy demand for space conditioning. To quantify the thermal performance and energy efficiency of green roofs an experimental investigation was done in residential buildings of Madurai, Tamilnadu, India. This paper refers to the analysis of the thermal properties and indoor thermal performance study of the green roof. The investigation were implemented in two phases: during the first phase, extended surface, air temperature and relative humidity measurements were taken at the indoor and outdoor environment of the buildings where the green roof had installed and during the second phase of the study, the thermal properties of the green roof, as well as, the cooling potential were examined. Results showed vegetative roofs reduced heat gain compared to the white reflective roofs and conventional reinforced cement concrete due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The results also proved that green roofs provide acceptable indoor thermal performance with respect to the other conventional roofs while re-establishing the relationship between human and environment, which have been destroyed due to the rapid urbanization.


2014 ◽  
Vol 1025-1026 ◽  
pp. 1099-1102 ◽  
Author(s):  
Hae Kwon Jung ◽  
Ki Hyung Yu ◽  
Young Sun Jeong

Aapartment houses account for more than 60% of the total of residential buildings to be built in South Korea. In particular, a high-rise apartment house with 21 floors or more has steadily increased in densely populated areas. The heating and cooling energy demand of the apartment house is greatly affected by the shape and the thermal insulation of its building envelope. In addition to its functional efficiency, the shape of building envelope in a high-rise apartment house is considered to be an important factor for the urban landscape with diverse construction methods and materials. In this study, we analyzed the heating and cooling energy demand depending on the effective heat capacity of building structure and the installation position of thermal insulation materials as the design conditions of high-rise apartment houses. This study used the ECO2 energy analysis program for the building energy efficiency grading certification system in South Korea.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 595
Author(s):  
Joanna Ferdyn-Grygierek ◽  
Izabela Sarna ◽  
Krzysztof Grygierek

In regions with temperate climates, the thermal insulation of buildings is increased to reduce the need for heating. It might significantly reduce human thermal comfort in the summer period. The problem can increase with global warming. The aim of the paper is to analyze the heating and cooling demand, as well as thermal comfort in a single-family house located in Poland for three climate scenarios (typical, real, and future weather data) and for two types of thermal insulation of external walls. In the study, two ways of cooling the building were taken into account: using split air conditioners and using fresh airflow provided through the opening of windows. The open area and the temperatures for opening windows have been optimized using a two-criteria function. The energy simulation was carried out in EnergyPlus 9.4 software. The multi-zone model was validated on the basis of the temperature measurement. The results showed that there will be a problem with ensuring thermal comfort in the future, especially in well-insulated buildings. The energy demand for cooling will be greater than the demand for heating. The use of passive cooling is a good solution for residential buildings in these regions, and the number of discomfort hours is small (max 5%).


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


2012 ◽  
Vol 476-478 ◽  
pp. 1589-1595
Author(s):  
Yi Ping Zhu ◽  
Xi Liao ◽  
Shu Yun Wu ◽  
Jing Luo ◽  
Yuan Jiang ◽  
...  

Based on indoor thermal environment test and questionnaire surveys, the paper studies on thermal insulation capacity and indoor thermal environment of the vernacular dwellings in Wei-he Plain of Shaanxi Province, China, and analyses their heating methods and application status. Besides, the popularity of sustainable techniques in local area has been evaluated and summarized. Moreover, the paper discusses the present problems in local indoor thermal environment and energy-saving status.


2014 ◽  
Vol 10 (1) ◽  
pp. 172-183 ◽  
Author(s):  
Sushil B. Bajracharya

This paper seeks to investigate into the aspects of thermal performance of traditional residential buildings in traditional settlements of Kathmandu valley. This study proceeds to analyze the detailed field data collected, with a view to identify the indoor thermal environment with respect to outdoor thermal environment in different seasons. This paper also compares the thermal performance of traditional buildings with modern residential buildings of traditional settlements of the valley. There is a regression analysis to obtain information about the thermal environment of different traditional and modern residential buildings with different conditions. The paper concludes that, thermal performance of traditional residential building, adapted in various ways to the changing thermal regime for thermal comfort is better than that of contemporary buildings.DOI: http://dx.doi.org/10.3126/jie.v10i1.10898Journal of the Institute of Engineering, Vol. 10, No. 1, 2014,  pp. 172–183


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2019 ◽  
Vol 11 (14) ◽  
pp. 3939 ◽  
Author(s):  
Antonio Artino ◽  
Gianpiero Evola ◽  
Giuseppe Margani ◽  
Edoardo Marino

All around the world, a huge amount of buildings have been built before the enforcement of specific codes for seismic resistance and energy efficiency. Particularly in Italy, over 74% of residential buildings were constructed before 1980, when only 25% of the territory was classified as seismic, and nearly 86% were built before 1991, when the first restrictive regulation on energy efficiency was issued. This means that most buildings need both seismic and energy renovation actions to improve their sustainability level. The proposed combined retrofit strategy for reinforced concrete framed buildings is based on the replacement of the external layer of double-leaf infill walls, made of hollow bricks, with high-performing AAC blocks: this solution can be implemented by operating mainly from the outside of the building, thus reducing occupants’ disruption during retrofitting. The generally neglected structural contribution of masonry infill panels is here considered using a recently developed macro-element modeling approach. The results suggest that, from a structural viewpoint, the proposed intervention involves the highest improvement at the damage limitation limit state, while lower upgrades are recorded at life safety limit state and near-collapse limit state. In regards to the energy issues, the energy demand can be reduced by 10% and 4% for heating and cooling, respectively, just by replacing the outer layer of blocks; further savings can be achieved through the application of a supplementary insulation layer.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2496 ◽  
Author(s):  
Laura Carnieletto ◽  
Borja Badenes ◽  
Marco Belliardi ◽  
Adriana Bernardi ◽  
Samantha Graci ◽  
...  

The design of ground source heat pumps is a fundamental step to ensure the high energy efficiency of heat pump systems throughout their operating years. To enhance the diffusion of ground source heat pump systems, two different tools are developed in the H2020 research project named, “Cheap GSHPs”: A design tool and a decision support system. In both cases, the energy demand of the buildings may not be calculated by the user. The main input data, to evaluate the size of the borehole heat exchangers, is the building energy demand. This paper presents a methodology to correlate energy demand, building typologies, and climatic conditions for different types of residential buildings. Rather than envelope properties, three insulation levels have been considered in different climatic conditions to set up a database of energy profiles. Analyzing European climatic test reference years, 23 locations have been considered. For each location, the overall energy and the mean hourly monthly energy profiles for heating and cooling have been calculated. Pre-calculated profiles are needed to size generation systems and, in particular, ground source heat pumps. For this reason, correlations based on the degree days for heating and cooling demand have been found in order to generalize the results for different buildings. These correlations depend on the Köppen–Geiger climate scale.


Algorithms ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 238
Author(s):  
Zhixing Li ◽  
Paolo Vincenzo Genovese ◽  
Yafei Zhao

This paper proposes an optimization process based on a parametric platform for building climate responsive design. Taking residential buildings in six typical American cities as examples, it proposes thermal environment comfort (Discomfort Hour, DH), building energy demand (BED) and building global cost (GC) as the objective functions for optimization. The design variables concern building orientation, envelope components, and window types, etc. The optimal solution is provided from two different perspectives of the public sector (energy saving optimal) and private households (cost-optimal) respectively. By comparing the optimization results with the performance indicators of the reference buildings in various cities, the outcome can give the precious indications to rebuild the U.S. residential buildings with a view to energy-efficiency and cost optimality depending on the location.


Sign in / Sign up

Export Citation Format

Share Document