scholarly journals The molten wood’s metal initial velocity variations effect on breaching simulation by MPS method

2021 ◽  
Vol 2072 (1) ◽  
pp. 012006
Author(s):  
A N Hidayati ◽  
A Waris ◽  
A P A Mustari ◽  
D Irwanto ◽  
N A Aprianti

Abstract Series of MPS simulations have been conducted using two-dimensional geometry. The simulation was based on Sudha’s experiment (2018) about initial velocity variations on molten Wood’s Metal (WM). The molten WM would be flowed through nozzle with the diameter was 6 mm. It would impinge to the Woods Metal Plate (WMP) which 270 mm below the nozzle. The WMP diameter was 470 mm. The temperature of molten WM and WMP were set at 573 K and 300 K, respectively. The initial velocity of molten WM was varied at 0.327 m/s, 0.397 m/s, 0.498 m/s in the y-negative direction. The simulation was calculated by using 2D MPS with additional procedures such as heat transfer calculation and defining a new type of wall particle. The results showed some different spread patterns, leading edge and phase fraction change for each initial velocity. It can be concluded that with varying the initial velocity will affect on the radial spread pattern but not so much effect occurs on the phase volume fraction change.

2013 ◽  
Vol 275-277 ◽  
pp. 558-561
Author(s):  
Xiao Ming Yuan ◽  
Hui Jun Zhao ◽  
Jing Yi Qu

Designed a new type of double inlet cylindrical cyclone. For search the separation performance in a cylindrical cyclone. By use of CFD,applied the RSM turbulence model and Euler two-phase flow method and ASM which to simulate separation process and flow field within a double inlet cylindrical cyclone. Then compared with the single inlet cyclone,obtained velocity distribution. Analyzed the differences of discrete phase volume fraction between different viscosity. The results show that the new-style cyclone caught more stable fluid field and higher separation efficiency. And when the viscosity is about 0.75 kg/m•s, the separation efficiency and stability of the oil core is higher. Preliminary flow field law is shown up.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Wook Kim ◽  
Seong-Hoon Kang ◽  
Se-Jong Kim ◽  
Seungchul Lee

AbstractAdvanced high strength steel (AHSS) is a steel of multi-phase microstructure that is processed under several conditions to meet the current high-performance requirements from the industry. Deep neural network (DNN) has emerged as a promising tool in materials science for the task of estimating the phase volume fraction of these steels. Despite its advantages, one of its major drawbacks is its requirement of a sufficient amount of training data with correct labels to the network. This often comes as a challenge in many areas where obtaining data and labeling it is extremely labor-intensive. To overcome this challenge, an unsupervised way of learning DNN, which does not require any manual labeling, is proposed. Information maximizing generative adversarial network (InfoGAN) is used to learn the underlying probability distribution of each phase and generate realistic sample points with class labels. Then, the generated data is used for training an MLP classifier, which in turn predicts the labels for the original dataset. The result shows a mean relative error of 4.53% at most, while it can be as low as 0.73%, which implies the estimated phase fraction closely matches the true phase fraction. This presents the high feasibility of using the proposed methodology for fast and precise estimation of phase volume fraction in both industry and academia.


1963 ◽  
Vol 67 (632) ◽  
pp. 529-530 ◽  
Author(s):  
E. Angus Boyd

Recently some data from tests done on a cambered plate have been published. The shape of metal plate aerofoil tested matched that taken up by a flexible two-dimensional sail. The most striking result in the rneasurements was the waviness present near the leading edge in the upper surface pressure distribution. To find the theoretical conditions under which such a waviness would occur a parabolic skeleton aerofoil was investigated, as this shape differed little from the actual aerofoil tested.


2018 ◽  
Vol 939 ◽  
pp. 38-45 ◽  
Author(s):  
Risly Wijanarko ◽  
Irene Angela ◽  
Bondan Tiara Sofyan

Al 7xxx alloy is a heat treatable Al alloy with superior strength. Solution treatment in precipitation hardening sequence of the alloy has an important role to dissolve second phases and bring vacancies out to form precipitates in the ageing process. Another strengthening can be done by Ti addition as grain refiner. As cast alloy by squeeze casting was homogenized at 400 °C for 4 h. Solution treatment was conducted at 220, 420, and 490 °C, followed by rapid quenching. Subsequent ageing was conducted at 130 °C for 48 h. Characterization was performed by optical microscope, SEM-EDS (Scanning Electron Microscopy – Energy Dispersive Spectroscopy), Rockwell hardness testing, XRD (X-Ray Diffraction), and STA (Simultaneous Thermal Analysis). Ti added alloy showed rounder grains, lower hardness, and more reduction in second phase volume fraction along with increasing solution treatment temperature than those in alloys without Ti addition. Otherwise, the alloy final hardness was increasing and higher after the ageing process due to higher second phase dissolution which leads to more precipitates formed.


1995 ◽  
Vol 32 (8) ◽  
pp. 133-140 ◽  
Author(s):  
Oskar Wanner

About ten years ago a mathematical model was presented which describes the spatial distribution and development in time of microbial species in mixed-culture biofilms. The model was based on the continuum approach and was one-dimensional in space. These two concepts still are the basis of practically all biofilm models used today. On the experimental side some remarkable new findings have been made in the past years: transport of dissolved components in the biofilm is not always due to molecular diffusion only, transport of particulate components can not be exclusively related to the net growth rates of the microbial species in the biofilm, the liquid phase volume fraction (porosity) in the biofilm is not a constant, and simultaneous attachment and detachment of cells and particles at the biofilm surface is an essential process. These experimental findings had a significant impact on our notion of biofilm systems and called for the integration of new processes in the original mixed-culture biofilm model. The new processes can reproduce most of the experimental observations, however, they are described by empirical mathematical functions. Their mechanisms and significance for biofilm behavior have not been completely elucidated yet. Thus, the extended mixed-culture biofilm model represents primarily a tool for research on biofilm processes.


2014 ◽  
Vol 224 ◽  
pp. 3-8 ◽  
Author(s):  
Sebastian Kamiński ◽  
Marcel Szymaniec ◽  
Tadeusz Łagoda

In this work an investigation of internal structure influence on mechanical and fatigue properties of ferritic-pearlitic steels is shown. Ferrite grain size and phase volume fraction of three grades of structural steel with similar chemical composition, but different mechanical properties, were examined. Afterwards, samples of the materials were subjected to cyclic bending tests. The results and conclusions are presented in this paper


2018 ◽  
Vol 786 ◽  
pp. 119-127
Author(s):  
Sameh M. Khafagy ◽  
Morsy Amin Morsy ◽  
H.M. El Sherbini ◽  
Y.F. Barakat

It is known that heat treatment (HT) highly affects the properties of base metal (BM) and fusion zones (FZ) of duplex stainless steel (DSS). In fact, it may give unwanted structure changes. Duplex stainless steels SAF 2205 welded joint was subjected to thermal cycle at temperature of 850◦C at holding times 1, 3, 5 and 7 hours. The influence of heating cycles and concentration of corrosive medium on the corrosion properties and microstructure of 2205 alloy was the objective of this work. It was found that process led to noticeable decrease in the corrosion resistance of BM and FZ specimens; moreover the decrease was large in BM than FZ. It was also found that sigma phase (σ) precipitated in the different zones of the structure. σ phase volume fraction was found to increase with increasing the holding time of HT, and its increase is larger in BM. Corrosion resistance was found to be oppositely related to σ phase formation. Secondary austenite phase (γ2) was also precipitated and its volume fraction in FZ was found to increase with increasing the holding time of HT and decreased in BM.


Sign in / Sign up

Export Citation Format

Share Document