scholarly journals The Computer Intelligent Selection of Scientific Research Subjects Through Ensemble Learning for Large-Scale Data Sources and Deep Neural Network

2021 ◽  
Vol 2083 (3) ◽  
pp. 032094
Author(s):  
Yan Ma ◽  
Lida Zou ◽  
Ke Liu ◽  
Yingkun Han ◽  
Lei Ma

Abstract Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and have various attributes. For the problem of subject selection, feature extraction and prediction model play important role in performance optimization. In the paper we introduce ensemble learning method to help find the best fit attributes describing data. Our ensemble learning models include random forests, support vector machine, Boltzmann machine and decision tree. Since the data are from many data sources, we adopt multiple models of deep neural network. An acceleration method is used to reduce the training time as well. Experiments shows that the proposed approach performs better than RNN algorithm both in accuracy ratio and recall ratio. The model selection module and acceleration method help optimize the time cost largely.

2019 ◽  
Vol 9 (20) ◽  
pp. 4397 ◽  
Author(s):  
Soad Almabdy ◽  
Lamiaa Elrefaei

Face recognition (FR) is defined as the process through which people are identified using facial images. This technology is applied broadly in biometrics, security information, accessing controlled areas, keeping of the law by different enforcement bodies, smart cards, and surveillance technology. The facial recognition system is built using two steps. The first step is a process through which the facial features are picked up or extracted, and the second step is pattern classification. Deep learning, specifically the convolutional neural network (CNN), has recently made commendable progress in FR technology. This paper investigates the performance of the pre-trained CNN with multi-class support vector machine (SVM) classifier and the performance of transfer learning using the AlexNet model to perform classification. The study considers CNN architecture, which has so far recorded the best outcome in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) in the past years, more specifically, AlexNet and ResNet-50. In order to determine performance optimization of the CNN algorithm, recognition accuracy was used as a determinant. Improved classification rates were seen in the comprehensive experiments that were completed on the various datasets of ORL, GTAV face, Georgia Tech face, labelled faces in the wild (LFW), frontalized labeled faces in the wild (F_LFW), YouTube face, and FEI faces. The result showed that our model achieved a higher accuracy compared to most of the state-of-the-art models. An accuracy range of 94% to 100% for models with all databases was obtained. Also, this was obtained with an improvement in recognition accuracy up to 39%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


2021 ◽  
pp. 1-14
Author(s):  
Sachin Sharma ◽  
Vineet Kumar ◽  
K.P.S. Rana

Generally, the process industry is affected by unwanted fluctuations in control loops arising due to external interference, components with inherent nonlinearities or aggressively tuned controllers. These oscillations lead to production of substandard products and thus affect the overall profitability of a plant. Hence, timely detection of oscillations is desired for ensuring safety and profitability of the plant. In order to achieve this, a control loop oscillation detection and quantification algorithm using Prony method of infinite impulse response (IIR) filter design and deep neural network (DNN) has been presented in this work. Denominator polynomial coefficients of the obtained IIR filter using Prony method were used as the feature vector for DNN. Further, DNN is used to confirm the existence of oscillations in the process control loop data. Furthermore, amplitude and frequency of oscillations are also estimated with the help of cross-correlation values, computed between the original signal and estimated error signal. Experimental results confirm that the presented algorithm is capable of detecting the presence of single or multiple oscillations in the control loop data. The proposed algorithm is also able to estimate the frequency and amplitude of detected oscillations with high accuracy. The Proposed method is also compared with support vector machine (SVM) and empirical mode decomposition (EMD) based approach and it is found that proposed method is faster and more accurate than the later.


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


2021 ◽  
pp. 42-51
Author(s):  
Muhammed J. A. Patwary ◽  
S. Akter ◽  
M. S. Bin Alam ◽  
A. N. M. Rezaul Karim

Bank deposit is one of the vital issues for any financial institution. It is very challenging to predict a customer if he/she can be a depositor by analyzing related information. Some recent reports demonstrate that economic depression and the continuous decline of the economy negatively impact business organizations and banking sectors. Due to such economic depression, banks cannot attract a customer's attention. Thus, marketing is preferred to be a handy tool for the banking sector to draw customers' attention for a term deposit. The purpose of this paper is to study the performance of ensemble learning algorithms which is a novel approach to predict whether a new customer will have a term deposit or not. A Portuguese retail bank data is used for our study, containing 45,211 phone contacts with 16 input attributes and one decision attribute. The data are preprocessed by using the Discretization technique. 40,690 samples are used for training the classifiers, and 4,521 samples are used for testing. In this work, the performance of the three mostly used classification algorithms named Support Vector Machine (SVM), Neural Network (NN), and Naive Bayes (NB) are analyzed. Then the ability of ensemble methods to improve the efficiency of basic classification algorithms is investigated and experimentally demonstrated. Experimental results exhibit that the performance metrics of Neural Network (Bagging) is higher than other ensemble methods. Its accuracy, sensitivity, and specificity are 96.62%, 97.14%, and 99.08%, respectively. Although all input attributes are considered in the classification method, in the end, a descriptive analysis has shown that some input attributes have more importance for this classification. Overall, it is shown that ensemble methods outperformed the traditional algorithms in this domain. We believe our contribution can be used as a depositor prediction system to provide additional support for bank deposit prediction.


2019 ◽  
Vol 10 (15) ◽  
pp. 4129-4140 ◽  
Author(s):  
Kyle Mills ◽  
Kevin Ryczko ◽  
Iryna Luchak ◽  
Adam Domurad ◽  
Chris Beeler ◽  
...  

We present a physically-motivated topology of a deep neural network that can efficiently infer extensive parameters (such as energy, entropy, or number of particles) of arbitrarily large systems, doing so with scaling.


Kybernetes ◽  
2019 ◽  
Vol 49 (9) ◽  
pp. 2335-2348 ◽  
Author(s):  
Milad Yousefi ◽  
Moslem Yousefi ◽  
Masood Fathi ◽  
Flavio S. Fogliatto

Purpose This study aims to investigate the factors affecting daily demand in an emergency department (ED) and to provide a forecasting tool in a public hospital for horizons of up to seven days. Design/methodology/approach In this study, first, the important factors to influence the demand in EDs were extracted from literature then the relevant factors to the study are selected. Then, a deep neural network is applied to constructing a reliable predictor. Findings Although many statistical approaches have been proposed for tackling this issue, better forecasts are viable by using the abilities of machine learning algorithms. Results indicate that the proposed approach outperforms statistical alternatives available in the literature such as multiple linear regression, autoregressive integrated moving average, support vector regression, generalized linear models, generalized estimating equations, seasonal ARIMA and combined ARIMA and linear regression. Research limitations/implications The authors applied this study in a single ED to forecast patient visits. Applying the same method in different EDs may give a better understanding of the performance of the model to the authors. The same approach can be applied in any other demand forecasting after some minor modifications. Originality/value To the best of the knowledge, this is the first study to propose the use of long short-term memory for constructing a predictor of the number of patient visits in EDs.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Abebe Belay Adege ◽  
Hsin-Piao Lin ◽  
Getaneh Berie Tarekegn ◽  
Yirga Yayeh Munaye ◽  
Lei Yen

Indoor and outdoor positioning lets to offer universal location services in industry and academia. Wi-Fi and Global Positioning System (GPS) are the promising technologies for indoor and outdoor positioning, respectively. However, Wi-Fi-based positioning is less accurate due to the vigorous changes of environments and shadowing effects. GPS-based positioning is also characterized by much cost, highly susceptible to the physical layouts of equipment, power-hungry, and sensitive to occlusion. In this paper, we propose a hybrid of support vector machine (SVM) and deep neural network (DNN) to develop scalable and accurate positioning in Wi-Fi-based indoor and outdoor environments. In the positioning processes, we primarily construct real datasets from indoor and outdoor Wi-Fi-based environments. Secondly, we apply linear discriminate analysis (LDA) to construct a projected vector that uses to reduce features without affecting information contents. Thirdly, we construct a model for positioning through the integration of SVM and DNN. Fourthly, we use online datasets from unknown locations and check the missed radio signal strength (RSS) values using the feed-forward neural network (FFNN) algorithm to fill the missed values. Fifthly, we project the online data through an LDA-based projected vector. Finally, we test the positioning accuracies and scalabilities of a model created from a hybrid of SVM and DNN. The whole processes are implemented using Python 3.6 programming language in the TensorFlow framework. The proposed method provides accurate and scalable positioning services in different scenarios. The results also show that our proposed approach can provide scalable positioning, and 100% of the estimation accuracies are with errors less than 1 m and 1.9 m for indoor and outdoor positioning, respectively.


Sign in / Sign up

Export Citation Format

Share Document