scholarly journals Development of self-cleaning SERS-active nanostructures based on ZnO nanorods and Ag nanoparticles

2021 ◽  
Vol 2103 (1) ◽  
pp. 012128
Author(s):  
D V Novikov ◽  
N S Malakhov ◽  
A M Tarasov ◽  
A I Savitskiy ◽  
S V Dubkov ◽  
...  

Abstract This work demonstrates the possibility of using a combination of zinc oxide nanorods with silver nanoparticles as a self-cleaning SERS substrate. In addition to Raman scattering enhancement such structures demonstrate the self-cleaning effect during UV treatment. The ZnO nanorods (NRs) array was synthesized on a ZnO seed layer by the hydrothermal method. The Ag nanoparticles (NPs) array was formed by vacuum thermal evaporation over the ZnO NRs. Rhodamine-B 230 μM solution has been detected using the formed SERS-substrates without additional mathematical processing of the Raman spectra. Subsequent UV radiation treatment showed a 3-fold decrease in the intensity of the spectral peaks of the analyte.

Author(s):  
Long Hoang Nguyen ◽  
Thanh Ha Nguyen ◽  
Tuan Anh Dao ◽  
Ke Huu Nguyen ◽  
Hung Vu Tuan Le

This study investigated the effect of changing the density of Ag nanoparticles on the ZnO/Ag nanorod structure on the SERS substrate signal amplification ability. First, ZnO nanorods were fabricated by the sol - gel method combining with the chemical bath deposition method. Next, the Ag nanoparticles were decorated on ZnO nanorods by the DC magnetron sputtering method. The density and size of the modified Ag nanoparticles on the ZnO nanorods were changed by adjusting the sputtering times to 5, 10, 15 and 20s respectively. The optical properties of the material are characterized by UV - Vis and PL measurements. The surface morphology of ZnO nanorods and Ag nanoparticles were investigated by scanning electron microscope (SEM). X-ray diffraction measurement (XRD) is used to examine the crystal structures of materials. The composition and distribution of the chemical elements inside the material were investigated by Energy-dispersive X-ray spectroscopy (EDX). The ability of SERS substrates to amplify Raman signals was evaluated by measuring the R6G solution and investigating application for abamectin with a laser excitation wavelength of 532 nm. The results showed that SERS ZnO/Ag substrates with sputtering time of 15s gave the best ability to amplify SERS with the detection of R6G solution at 10􀀀9 M and abamectin at 50 ppm.


2008 ◽  
Vol 8 (11) ◽  
pp. 5854-5857 ◽  
Author(s):  
Guangping Zhu ◽  
Chunxiang Xu ◽  
Jing Zhu ◽  
Changgui Lu ◽  
Yiping Cui ◽  
...  

High density zinc oxide nanorods with uniform size were synthesized on (100) silicon substrate by vapor-phase transport method. The scanning electron microscopy images reveal that the nanorods have an average diameter of about 400 nm. The X-ray diffraction pattern demonstrates the wurtzite crystalline structure of the ZnO nanorods growing along [0001] direction. The single-photon excited photoluminescence presents a strong ultraviolet emission band at 394 nm and a weak visible emission band at 600 nm. When the ZnO nanorods were respectively pumped by various wavelength lasers from 520 nm to 700 nm, two-photon excited ultraviolet photoluminescence was observed. The dependence of the two-photon excited photoluminescence intensity on the excitation wavelength and power was investigated in detail.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 845-849
Author(s):  
GAURAV SHUKLA ◽  
ALIKA KHARE

Hydrothermal growth of highly c-axis oriented ZnO nanorods with high aspect ratio on pulsed laser deposited ZnO seed layer is reported. Effect of pre-heating time, growth time and seed layer on the structural, morphological and optical properties of ZnO nanorods is presented. The possible growth mechanism for ZnO nanorods is also discussed.


2013 ◽  
Vol 26 ◽  
pp. 33-38 ◽  
Author(s):  
Ruziana Mohamed ◽  
Zuraida Khusaimi ◽  
A.N. Afaah ◽  
Aadila Aziz ◽  
Mohamad Hafiz Mamat ◽  
...  

Magnesium (Mg)-doped zinc oxides (ZnO) have been prepared on a silicon substrate by using the solution-immersion method. The nanorods films were annealed at different temperature 0°C, 250°C, 500°C respectively for 1 hour. The XRD diffraction indicated that the Mg-doped ZnO nanorods have good crystallinity with a hexagonal wurzite structure preferentially oriented along the (002) direction. PL spectroscopy at room temperature shows strong UV peaks appearing at 383 nm when annealed at 250°C. The intensity of broad emission peaks increases with increasing annealing temperature to 500°C which is possibility attributed to intrinsic defects.


2019 ◽  
Vol 6 (9) ◽  
pp. 1900063 ◽  
Author(s):  
Meneka Banik ◽  
Poulomi Chakrabarty ◽  
Anuja Das ◽  
Samit K. Ray ◽  
Rabibrata Mukherjee

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 922 ◽  
Author(s):  
Francesca Luzi ◽  
Alessandro Di Michele ◽  
Luigi Torre ◽  
Debora Puglia

Poly(vinyl alcohol-co-ethylene) (EVOH) films containing zinc oxide nanorods (ZnO Nrods) at 0.1, 0.5, and 1 wt%, were realized by solvent casting. The effect of ZnO Nrods content on morphological, thermal, optical, mechanical, and oxygen permeability properties were analyzed. In addition, moisture content and accelerated-aging test studies were performed, with the intention to determine the influence of zinc oxide nanofillers on the functional characteristics of realized packaging systems. Tensile properties showed increased values for strength and deformation-at-break in EVOH-based formulations reinforced with 0.1 and 0.5 wt% of zinc oxide nanorods. Results from the colorimetric and transparency investigations underlined that the presence of ZnO Nrods in EVOH copolymer did not induce evident alterations. In addition, after the accelerated-aging test, the colorimetric test confirmed the possibility for these materials to be used in the packaging sector. This behavior was induced by the presence of zinc oxide nanofillers that act as a UV block that made them useful as an efficient absorber of UV radiation.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3168 ◽  
Author(s):  
Alexander Tamashevski ◽  
Yuliya Harmaza ◽  
Ekaterina Slobozhanina ◽  
Roman Viter ◽  
Igor Iatsunskyi

The precise detection of cancer cells currently remains a global challenge. One-dimensional (1D) semiconductor nanostructures (e.g., ZnO nanorods) have attracted attention due to their potential use in cancer biosensors. In the current study, it was demonstrated that the possibility of a photoluminescent detection of human leukemic T-cells by using a zinc oxide nanorods (ZnO NRs) platform. Monoclonal antibodies (MABs) anti-CD5 against a cluster of differentiation (CD) proteins on the pathologic cell surface have been used as a bioselective layer on the ZnO surface. The optimal concentration of the protein anti-CD5 to form an effective bioselective layer on the ZnO NRs surface was selected. The novel biosensing platforms based on glass/ZnO NRs/anti-CD5 were tested towards the human T-lymphoblast cell line MOLT-4 derived from patients with acute lymphoblastic leukemia. The control tests towards MOLT-4 cells were performed by using the glass/ZnO NRs/anti-IgG2a system as a negative control. It was shown that the photoluminescence signal of the glass/ZnO NRs/anti-CD5 system increased after adsorption of T-lymphoblast MOLT-4 cells on the biosensor surface. The increase in the ZnO NRs photoluminescence intensity correlated with the number of CD5-positive MOLT-4 cells in the investigated population (controlled by using flow cytometry). Perspectives of the developed ZnO platforms as an efficient cancer cell biosensor were discussed.


2019 ◽  
Vol 10 ◽  
pp. 2483-2496
Author(s):  
Jingran Zhang ◽  
Tianqi Jia ◽  
Yongda Yan ◽  
Li Wang ◽  
Peng Miao ◽  
...  

Nanostructures have been widely employed in surface-enhanced Raman scattering (SERS) substrates. Recently, in order to obtain a higher enhancement factor at a lower detection limit, hierarchical structures, including nanostructures and nanoparticles, appear to be viable SERS substrate candidates. Here we describe a novel method integrating the nanoindentation process and chemical redox reaction to machine a hierarchical SERS substrate. The micro/nanostructures are first formed on a Cu(110) plane and then Ag nanoparticles are generated on the structured copper surface. The effect of the indentation process parameters and the corrosion time in the AgNO3 solution on the Raman intensities of the SERS substrate with hierarchical structures are experimentally studied. The intensity and distribution of the electric field of single and multiple Ag nanoparticles on the surface of a plane and with multiple micro/nanostructures are studied with COMSOL software. The feasibility of the hierarchical SERS substrate is verified using R6G molecules. Finally, the enhancement factor using malachite green molecules was found to reach 5.089 × 109, which demonstrates that the production method is a simple, reproducible and low-cost method for machining a highly sensitive, hierarchical SERS substrate.


2014 ◽  
Vol 5 ◽  
pp. 173-179 ◽  
Author(s):  
Rafal Pietruszka ◽  
Bartlomiej Slawomir Witkowski ◽  
Grzegorz Luka ◽  
Lukasz Wachnicki ◽  
Sylwia Gieraltowska ◽  
...  

Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.


2016 ◽  
Vol 19 (4) ◽  
pp. 181-183 ◽  
Author(s):  
Tzu-Yi Yu ◽  
Yi Cian Chen ◽  
Wang Ting Chiu ◽  
Yang Luo ◽  
Sheng Shin Wang ◽  
...  

In this study, we address process how the ZnO nanorods were deposited on GaN substrates with spin-coating by using the hydro-thermal methods. After ZnO was spin coated, the samples were annealed with different temperatures to incorporate with Au nano particles. Multiple material analyses, such as the field emission scanning electron microscopy (FESEM), the energy dispersive X-ray spectroscopy (EDX) and the X-ray diffraction (XRD) analyses were carried out to characterize the Au nanoparticles/ZnO nanorods/GaN nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document