scholarly journals Design of a Mechatronic Interface with Compliant Manipulator for Robot Assisted Echocardiography

2021 ◽  
Vol 2107 (1) ◽  
pp. 012005
Author(s):  
Mostafa Sayahkarajy ◽  
Ahmad Athif Mohd Faudzi

Abstract A compliant manipulator with a compound soft actuator is proposed for robot-assisted echocardiography. The target application is devoted to the TOE echo (Trans-oesophageal echocardiography), which is conventionally performed by medical practitioners. The manual manipulation of the echocardiography probe shows significant risks such as human errors, exposure to ionizing radiation, and multitasking complexity. Automation of TOE provides advantages in terms of control, safety, and workload of the operator. This paper proposes a teleoperated robotic system assisting the physician to perform TOE, to be used in cardiac catheterization laboratories as well as hybrid operation theatres. A system containing a holder with master-slave Dynamixel servos and a manipulator with soft actuators has been developed. To alleviate the major lack of the previous designs in conducting the insertion tube, a robotic arm with a soft structure is proposed that has not hazards of conventional robot manipulators. The fundamental equations and relations for quasi-static control of the system are developed in this paper.

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyeong Ho Cho ◽  
Ho Moon Kim ◽  
Youngeun Kim ◽  
Sang Yul Yang ◽  
Hyouk Ryeol Choi

Soft linear actuators (SLAs) such as shape memory alloy (SMA) wires, pneumatic soft actuators, dielectric elastomer actuator, and twisted and coiled soft actuator (TCA) called artificial muscle actuators in general, have many advantages over the conventional actuators. SLAs can realize innovative robotic technologies like soft robots, wearable robots, and bionic arms in the future, but further development is still needed in real applications because most SLAs do not provide large displacement or force as needed. This paper presents a novel mechanism supplementing SLAs by accumulating the displacement of multiple SLAs. It adopts the principle of differential gears in reverse. Since the input units of the mechanism are extensible, more displacement can be accumulated by increasing the number of the input units as many as needed. The mechanism is basically used to accumulate displacements, but can be used to accumulate forces by changing its operating mode. This paper introduces the design and working principle of the mechanism and validates its operation experimentally. In addition, the mechanism is implemented on a robotic arm and its effectiveness is confirmed.


2020 ◽  
Vol 6 (3) ◽  
pp. 127-130
Author(s):  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Nico Lösch ◽  
Peter P. Pott

AbstractAccess to systems for robot-assisted surgery is limited due to high costs. To enable widespread use, numerous issues have to be addressed to improve and/or simplify their components. Current systems commonly use universal linkage-based input devices, and only a few applicationoriented and specialized designs are used. A versatile virtual reality controller is proposed as an alternative input device for the control of a seven degree of freedom articulated robotic arm. The real-time capabilities of the setup, replicating a system for robot-assisted teleoperated surgery, are investigated to assess suitability. Image-based assessment showed a considerable system latency of 81.7 ± 27.7 ms. However, due to its versatility, the virtual reality controller is a promising alternative to current input devices for research around medical telemanipulation systems.


Author(s):  
Ryan Geer ◽  
Suyi Li

This study aims to examine the coiling and uncoiling motion of a soft pneumatic actuator reinforced with tilted helix fibers. Coiling motion can be quite useful for robotic manipulation and locomotion purposes. This research proposes and investigates a novel actuator that is inspired and derived from the unique cell wall architecture in the seed appendage of Stork’s Bill plant (Erodium Gruinum). These plant cells are reinforced by cellulose fibers distributed in a tilted helix pattern — helixes that are tilted at a certain angle with respect to the longitudinal axis of the cell. As a result, the seed appendage can coil and uncoil via a combination of twisting and bending. This paper discusses the design, fabrication, and testing of a soft actuator that can mimic this sophisticated motion. This actuator consists of Kevlar fiber thread wrapped around a silicon rubber body that has the shape of a tube. The tube will be capped at both ends so that it can be pressurized internally to induce motion. Once the design parameter has been chosen, the soft actuator are fabricated by 1) designing and 3D printing molds, 2) tube casting and fiber wrapping, and 3) creating the end caps for pressure sealing. Carefully executing these fabrication steps is essential because any errors could give undesired deformation. Several soft actuators prototypes are fabricated based on different design choices regarding the actuator radius, tube wall thickness, and the number of tilted helix fibers (aka. fiber coverage). Proof-of-concept tests show that these actuator prototypes can indeed exhibit a combined twisting and bending under internal pressurization: all are the necessary receipts to achieve the coiling and uncoiling motion. Result of this paper can pave the way for a new family of soft actuators capable of unprecedented and sophisticated actuation motions, which are particularly appealing for soft robot application.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xinjie Wang ◽  
Yan Cheng ◽  
Huadong Zheng ◽  
Yihao Li ◽  
Caidong Wang

Purpose Currently, rehabilitation medical care is expensive, requires a large number of rehabilitation therapist and which can only limit in the fixed location. In addition, there is a lack of research on the structure optimization and theoretical analysis of soft actuators for hand rehabilitation. In view of the problems above, this paper aims to propose a cheap, portable, wearable soft multiple joints rehabilitation glove. Design/methodology/approach First, this paper determined the hyperelastic constitutive model by material tensile test. Second, the soft actuator’s internal longitudinal section shape was optimized through the comparison of three diverse chamber structures. Meanwhile, the motion model of the soft actuator is established by the finite element model analysis method. Then, this paper established the constitutive model of the soft actuator according to the torque equilibrium equation and analyzed the relationship between the soft actuator’s bending angle and the input air pressure. This paper has verified that the theoretical model is correct through the soft actuator bending test. Finally, rehabilitation gloves were manufactured according to the model and the rehabilitation performance and grasping ability of gloves were verified through experiments. Findings The optimization results show that the internal semicircular cavity has better performance. Then, the actuator performance is better after adding the external arc structure and optimizing the physical dimension. The experimental results show that the trajectory of the actuator conforms to the mathematical model and rehabilitation gloves can meet the needs of rehabilitation treatment. Practical implications Rehabilitation gloves made of actuators can help patients with hand dysfunction in daily rehabilitation training. Then, it can also assist patients with some fine and complicated hand movements. Originality/value This paper proposes a new type of soft rehabilitation glove, which is composed of new soft actuators and adapting pieces. The new actuator is small enough to be fitted to the knuckle of the glove to move each joint of the finger.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Chenghong Zhang ◽  
Bin He ◽  
Zhipeng Wang ◽  
Yanmin Zhou ◽  
Aiguo Ming

Due to their light weight, flexibility, and low energy consumption, ionic electroactive polymers have become a hotspot for bionic soft robotics and are ideal materials for the preparation of soft actuators. Because the traditional ionic electroactive polymers, such as ionic polymer-metal composites (IPMCs), contain water ions, a soft actuator does not work properly upon the evaporation of water ions. An ionic liquid polymer gel is a new type of ionic electroactive polymer that does not contain water ions, and ionic liquids are more thermally and electrochemically stable than water. These liquids, with a low melting point and a high ionic conductivity, can be used in ionic electroactive polymer soft actuators. An ionic liquid gel (ILG), a new type of soft actuator material, was obtained by mixing 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), hydroxyethyl methacrylate (HEMA), diethoxyacetophenone (DEAP) and ZrO2 and then polymerizing this mixture into a gel state under ultraviolet (UV) light irradiation. An ILG soft actuator was designed, the material preparation principle was expounded, and the design method of the soft robot mechanism was discussed. Based on nonlinear finite element theory, the deformation mechanism of the ILG actuator was deeply analyzed and the deformation of the soft robot when grabbing an object was also analyzed. A soft robot was designed with the soft actuator as the basic module. The experimental results show that the ILG soft robot has good driving performance, and the soft robot can grab a 105 mg object at an input voltage of 3.5 V.


Author(s):  
Vidya K. Nandikolla ◽  
Michael Costa ◽  
Nathan Boyd ◽  
Gilberto Rosales

Abstract The unique functional properties of nickel-titanium Shape Memory Alloys (SMA) enable them to be used as actuators. This research paper demonstrates theoretically and experimentally the feasibility of using SMA in smart tires for a mobile robot. The design procedure for SMA as a coil spring actuator for a soft deformable wheel is described. The primary focus is the mechanical modeling, manufacturing, and system dynamics of a soft deformable wheel. The 3D printed soft tire exploits the capabilities of the SMA actuation using a voltage signal. The printed components are activated and integrated with electromechanical circuit for wireless communication system. The performance of the force feedback control system is evaluated at different operating conditions to demonstrate the shape-changing characteristic of the smart tire. The developed prototype is designed to propel forward and backward on flat and uneven surface. The experimental results obtained demonstrate the potential of SMA as soft actuators, its benefits and limitations as flexible systems.


Author(s):  
Yoshitaka Naka ◽  
Masaki Fuchiwaki ◽  
Kazuhiro Tanaka

Micro pumps with various driving systems have been developed and they have been carried out with experimental and numerical approaches so far. The authors propose a micro pump with soft actuators by conducting polymers as a driving source. The purpose of the present study is to develop the micro pump driven by conducting polymer soft actuator based on polypyrrole and to clarify the basic characteristics of the micro pump. Especially, we measure the flow rates, delivery heads and energy consumption of the micro pump driven by conducting polymer soft actuators and compare these results with those of the conventional micro pumps. The micro pump driven by a conducting polymer soft actuator can transport fluids in one direction without backflow by two soft actuators with opening and closing movement. Furthermore, wider ranges of flow rates are obtained with this micro pump and greater maximum delivery heads are obtained by them Moreover, the influence of the viscosity of the transport fluid was small and the micro pump driven by the conducting polymer soft actuator can transport fluid even with the viscosity that is 400 times as great as that of water in addition. The energy consumption rates of our micro pump are dramatically lower than those of the conventional micro pumps. This is because a conducting polymer soft actuator drives with a low voltage and a micro pump with low energy consumption is realized here.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 71 ◽  
Author(s):  
Ali Zolfagharian ◽  
Akif Kaynak ◽  
Sui Yang Khoo ◽  
Jun Zhang ◽  
Saeid Nahavandi ◽  
...  

A new type of soft actuator was developed by using hydrogel materials and three-dimensional (3D) printing technology, attracting the attention of researchers in the soft robotics field. Due to parametric uncertainties of such actuators, which originate in both a custom design nature of 3D printing as well as time and voltage variant characteristics of polyelectrolyte actuators, a sophisticated model to estimate their behaviour is required. This paper presents a practical modeling approach for the deflection of a 3D printed soft actuator. The suggested model is composed of electrical and mechanical dynamic models while the earlier version describes the actuator as a resistive-capacitive (RC) circuit. The latter model relates the ionic charges to the bending of an actuator. The experimental results were acquired to estimate the transfer function parameters of the developed model incorporating Takagi-Sugeno (T-S) fuzzy sets. The proposed model was successful in estimating the end-point trajectory of the actuator, especially in response to a broad range of input voltage variation. With some modifications in the electromechanical aspects of the model, the proposed modelling method can be used with other 3D printed soft actuators.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 792
Author(s):  
Shuhei Kawamura ◽  
Mingcong Deng

Recently, soft actuators have been expected to have many applications in various fields. Most of the actuators are composed of flexible materials and driven by air pressure. The 3-DOF micro-hand, which is a kind of soft actuator, can realize a three degrees of freedom motion by changing the applied air pressure pattern. However, the input–output relation is nonlinear and complicated. In previous research, a model of the micro-hand was proposed, but an error between the model and the experimental results was large. In this paper, modeling for the micro-hand is proposed by using multi-output support vector regression (MSVR) and ant colony optimization (ACO), which is one of the artificial intelligence (AI) methods. MSVR estimates the input–output relation of the micro-hand. ACO optimizes the parameters of the MSVR model.


2000 ◽  
Vol 12 (3) ◽  
pp. 254-260 ◽  
Author(s):  
Toshiro Noritsugu ◽  
◽  
Daijyu Kaneshiro ◽  
Takashi Inoue

The manipulation of fragile and shapeless objects requires an actuator with enough flexibility and safety not to injure manipulated objects. To cope with such requirements, soft actuators have been developed, most of which utilize elastic deformation of a rubber tube or balloon caused by compressed air pressure. Such a pneumatic rubber actuator is expected to be effectively used as a flexible and friendly soft actuator in various fields. In this study, to realize a flexible pneumatic carrier system, a soft planar actuator using rubber balls has been developed assuming that the actuator directly contacts carried objects. This paper describes a fundamental principle of operation, a control method and experimental results. Additionally, a small sized soft planar actuator made of silicone rubber is described. The results show the effectiveness of the proposed actuator mechanism.


Sign in / Sign up

Export Citation Format

Share Document