scholarly journals The Effect of Working Gases Mixing Ratios on the Synthesis and Characteristics of TiO2/SiO2 Nanocomposite via Closed-Field unbalanced DC Magnetron Co-Sputtering Technique

2021 ◽  
Vol 2114 (1) ◽  
pp. 012060
Author(s):  
N. H. Mutesher

Abstract The objective of this research is to study the influence of deposition parameters such as gases mixing ratio O2/Ar on the structural and optical properties of the TiO2/SiO2 nanocomposite films synthesized using closed field unbalanced dc magnetron co-sputtering technique. The nanocomposite thin films were characterized using x-ray diffraction (XRD) to determine the phase structure, and Fourier transform infrared (FTIR) spectroscopy to investigate Si-O-Si, Ti-O and Si–O–Ti. functional groups. The UV-VIS. absorption spectra of the synthesized films reveal that the indirect energy band gap was found to be 2.75 eV. The mixing ratio of Oxygen and Argon (O2/Ar) gases has a pronounced controlling effect on the structural and optical properties of such nanocomposite.

2005 ◽  
Vol 905 ◽  
Author(s):  
B. Yang ◽  
Y. M. Lu ◽  
C. Neumann ◽  
A. Polity ◽  
C. Z. Wang ◽  
...  

AbstractDelafossite-type CuAlO2 thin films have been deposited by radio frequency (RF) reactive sputtering on sapphire using a CuAlO2 ceramic target. A study of structural and optical properties was performed on films of varying deposition parameters such as substrate temperature and oxygen partial pressure and also post annealing. The crystalline phase in the films was identified to be the delafossite structure by x-ray diffraction. The optical properties, such as the wavelength dependence of the transmittance and the band gap, were determined. The average transmittance is 80% in the wavelength range of 400-1500 nm and the band gap is 3.81 eV.


2014 ◽  
Vol 28 (28) ◽  
pp. 1450224 ◽  
Author(s):  
Gh. H. Khorrami ◽  
A. Kompany ◽  
A. Khorsand Zak

( K 0.5 N 0.5) NbO 3 lead-free nanopowders were synthesized by a modified sol–gel method in different media: gelatin, starch and chitosan, as polymerization and stabilizer agents. The proper temperature needed for calcinating the prepared gel was obtained using thermogravometric analysis (TGA). Structural and optical properties of the prepared powders were investigated and compared using X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-Vis diffused reflectance spectroscopy. The XRD patterns of the synthesized samples confirmed the formation of the orthorhombic structure at 600°C calcination temperature with no remarkable extra peaks. TEM images showed that the morphologies of the particles prepared in the three different media are cubic with the average size of about 69, 34 and 49 nm for gelatin, starch and chitosan, respectively. The value of the energy band gap of the samples was calculated by diffused reflectance spectroscopy, using Kubelka–Munk method. Our results showed that the type of the polymerization agent is important in preparing KNN nanoparticles and affects the structural and optical properties of the synthesized samples.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2014 ◽  
Vol 989-994 ◽  
pp. 656-659
Author(s):  
Ping Cao ◽  
Yue Bai

Al co-doped ZnCoO thin film has been prepared by a sol-gel method. The structural and optical properties of the sample were investigated. X-ray diffraction and UV absorption spectroscopy analyses indicate that Al3+ and Co2+ substitute for Zn2+ without changing the wurtzite structure. With the Al doping, the visible emission increased and the UV emission decreased, which is attributed to the increase of O vacancies and Zn interstitials.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012012
Author(s):  
Tamara S. Hussein ◽  
Ala F. Ahmed

Abstract In this study, the effect of grafting with Iron (Fe) ratios (0.1, 0.3 and 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared films was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared films is polycrystalline, and Atomic Force Microscope (AFM) images also showed that the increased vaccination with Iron led to an increase in the crustal size ratio and a decrease in surface roughness, The absorption coefficient was calculated and the optical energy gap for the prepared thin films. It was found the absorption decreases and the energy gap decreases with the increase of doping ratio.


2021 ◽  
Vol 317 ◽  
pp. 53-59
Author(s):  
Muhammad Safwan Sazali ◽  
Muhamad Kamil Yaakob ◽  
Mohamad Hafiz Mamat ◽  
Oskar Hasdinor Hassan ◽  
Muhd Zu Azhan Yahya

In this work, single phase Bismuth Ferrite, BiFeO3 was successfully synthesized by using hydrothermal method assisted with different weight (0.24 g, 0.36 g and 0.48 g) of Chitosan. Potassium hydroxide (KOH) were used as a mineralizer during the synthesis process for the precipitation. The samples were characterized for different properties such as structural and optical properties, and were then compared with previous works. The X-ray diffraction data for all the samples showed that the samples had a single phase belonging to R3c space group with perovskite rhombohedral structure at diffraction angle 32.0° to 32.5° even though the slight presence of secondary phase at diffraction angle 28° was detected. Scanning electron microscope revealed a decrement in particle size as the weight of Chitosan increased indicating effective used of Chitosan in controlling the agglomeration of the particles. All samples BiFeO3 assisted with and without Chitosan showed significant enhancement in energy gap where the obtained results showed a small energy gap values ranging from ~1.22 eV to ~1.88 eV determined from UV-vis absorbance characterization. Therefore, by the addition of Chitosan, the properties of BiFeO3 such as structural and optical have changed as well as preventing from the particle to agglomerate.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5384
Author(s):  
Yonghyun Lee ◽  
Sang Won Jung ◽  
Sang Hwi Park ◽  
Jung Whan Yoo ◽  
Juhyun Park

The doping of tungsten into VO2 (M) via a polyol process that is based on oligomerization of ammonium metavanadate and ethylene glycol (EG) to synthesize a vanadyl ethylene glycolate (VEG) followed by postcalcination was carried out by simply adding 1-dodecanol and the tungsten source tungstenoxytetrachloride (WOCl4). Tungsten-doped VEGs (W-VEGs) and their calcinated compounds (WxVO2) were prepared with varying mixing ratios of EG to 1-dodecanol and WOCl4 concentrations. Characterizations of W-VEGs by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and infrared and transmittance spectroscopy showed that tungsten elements were successfully doped into WxVO2, thereby decreasing the metal-insulator transition temperature from 68 down to 51 °C. Our results suggested that WOCl4 variously combined with 1-dodecanol might interrupt the linear growth of W-VEGs, but that such an interruption might be alleviated at the optimal 1:1 mixing ratio of EG to 1-dodecanol, resulting in the successful W doping. The difference in the solar modulations of a W0.0207VO2 dispersion measured at 20 and 70 °C was increased to 21.8% while that of a pure VO2 dispersion was 2.5%. It was suggested that WOCl4 coupled with both EG and 1-dodecanol at an optimal mixing ratio could improve the formation of W-VEG and WxVO2 and that the bulky dodecyl chains might act as defects to decrease crystallinity.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Rajesh Parmar ◽  
R. S. Kundu ◽  
R. Punia ◽  
N. Kishore ◽  
P. Aghamkar

Iron-containing bismuth silicate glasses with compositions 60SiO2·(100−x)Bi2O3·xFe2O3 have been prepared by conventional melt-quenching technique. The amorphous nature of the glass samples has been ascertained by the X-ray diffraction. The density (d) has been measured using Archimedes principle, molar volume (Vm) has also been estimated, and both are observed to decrease with the increase in iron content. The glass transition temperature (Tg) of these iron bismuth silicate glasses has been determined using differential scanning calorimetry (DSC) technique, and it increases with the increase in Fe2O3 content. The IR spectra of these glasses consist mainly of [BiO6], [BiO3], and [SiO4] structural units. The optical properties are measured using UV-VIS spectroscopy. The optical bandgap energy (Eop) is observed to decrease with the increase in Fe2O3 content, whereas reverse trend is observed for refractive index.


Sign in / Sign up

Export Citation Format

Share Document