scholarly journals Temperature measurement methods in an experimental setup during bone drilling: A brief review on the comparison of thermocouple and infrared thermography

2021 ◽  
Vol 2129 (1) ◽  
pp. 012096
Author(s):  
Md Ashequl Islam ◽  
Nur Saifullah Kamarrudin ◽  
Ruslizam Daud ◽  
Ishak Ibrahim ◽  
Anas Rahman ◽  
...  

Abstract Predicting thermal response in orthopedic surgery or dental implantation remains a significant challenge. This study aims to find an effective approach for measuring temperature elevation during a bone drilling experiment by analyzing the existing methods. Traditionally thermocouple has frequently been used to predict the bone temperature in the drilling process. However, several experimental studies demonstrate that the invasive method using thermocouple is impractical in medical conditions and preferred the thermal infrared (IR) camera as a non-invasive method. This work proposes a simplified experimental model that uses the thermocouple to determine temperature rise coupled with the thermal image source approach. Furthermore, our new method provides a significant opportunity to calibrate the thermal IR camera by finding out the undetected heat elevation in a workpiece depth.

Author(s):  
Mohd Faizal Ali Akhbar ◽  
Ahmad Razlan Yusoff

Bone-drilling operation necessitates an accurate and efficient surgical drill bit to minimize thermal damage to the bone. This article provides a methodology for predicting the bone temperature elevation during surgical bone drilling and to gain a better understanding on the influences of the point angle, helix angle and web thickness of the drill bit. The proposed approach utilized the normalized Cockroft–Latham damage criterion to predict material cracking in the drilling process. Drilling simulation software DEFORM-3D is used to approximate the bone temperature elevation corresponding to different drill bit geometries. To validate the simulation results, bone temperature elevations were evaluated by comparison with ex vivo bone-drilling process using bovine femurs. The computational results fit well with the ex vivo experiments with respect to different drill geometries. All the investigated drill bit geometries significantly affect bone temperature rise. It is discovered that the thermal osteonecrosis risk regions could be reduced with a point angle of 110° to 140°, a helix angle of 5° to 30° and a web thickness of 5% to 40%. The drilling simulation could accurately estimate the maximum bone temperature elevation for various surgical drill bit point angles, web thickness and helix angles. Looking into the future, this work will lead to the research and redesign of the optimum surgical drill bit to minimize thermal insult during bone-drilling surgeries.


2017 ◽  
Vol 37 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Derek A. Rosenfield ◽  
Marcilio Nichi ◽  
Cristiane Schilbach Pizzutto

ABSTRACT: Empirical studies proved that C-peptides are performing numerous intrinsic biological roles, and serve as a marker for pancreatic performance analysis. Since the last decade, C-peptide assays for differential diagnosis in veterinary diabetic patients are becoming more available, but still only for a very limited number of species. Studies on C-peptide as a diagnostic tool, therapy for associated complications, or as replacement therapies for C-peptide deficiency still showed not to be a common practice in veterinary medicine. This review was conducted to determine the potential importance of C-peptide in Veterinary Medicine, relevant in the diagnosis of diabetes and for other metabolic processes, as well as its proposed therapeutic benefits. Numerous articles were identified that reported positive results in their experimental studies, whether C-peptide as a biomarker for pancreatic performance in dogs, cats, and horses, as a non-invasive method to monitor nutritional status in primates, or to investigate its potential therapeutic benefits for diabetes-related illnesses.


2020 ◽  
Vol 30 (4) ◽  
pp. 113-118
Author(s):  
A. Yu. Zaitceva ◽  
◽  
Yu. Ya. Kislyakov ◽  
М. S. Mazing ◽  
V. V. Davydov ◽  
...  

A non-invasive method for analyzing oxygen supply for human tissues using methods of mathematical processing of multidimensional data, which has an important diagnostic value, is proposed. As a result of experimental studies with the participation of 10 subjects using a non-invasive optical trainable diagnostic system, attempts were made to collect information in conventional units by means of multichannel optical analyzer of the visible spectral range. The obtained results of mathematical processing of experimental data show that the proposed technique is effective and can be used in practical medical and biological developments.


2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


Author(s):  
Nova T. Zamora ◽  
Kam Meng Chong ◽  
Ashish Gupta

Abstract This paper presented the recent application of die powerup in Thermal Imaging as applied to the detection of defects causing thermal failure on revenue products or units not being captured using other available techniques. Simulating the condition on an actual computer setup, the infrared (IR) camera should capture images simultaneously as the entire bootup process is being executed by the processor, thus revealing a series of images and thermal information on each and every step of the startup process. This metrology gives the failure analyst a better approach to acquire a set of information that substantiate in the conduct of rootcause analysis of thermal-related failure in revenue units, especially on customer returns. Defective units were intentionally engineered in order to collect the thermal response data and eventually come up with a plot of all known thermal-related defects.


Author(s):  
Yongmei Liu ◽  
Rajen Dias

Abstract Study presented here has shown that Infrared thermography has the potential to be a nondestructive analysis tool for evaluating package sublayer defects. Thermal imaging is achieved by applying pulsed external heating to the package surface and monitoring the surface thermal response as a function of time with a high-speed IR camera. Since the thermal response of the surface is affected by the defects such as voids and delamination below the package surface, the technique can be used to assist package defects detection and analysis.


Author(s):  
Patrick Veit-Haibach ◽  
Martin W. Huellner ◽  
Martin Banyai ◽  
Sebastian Mafeld ◽  
Johannes Heverhagen ◽  
...  

Abstract Objectives The purpose of this study was the assessment of volumetric CT perfusion (CTP) of the lower leg musculature in patients with symptomatic peripheral arterial disease (PAD) before and after interventional revascularisation. Methods Twenty-nine consecutive patients with symptomatic PAD of the lower extremities requiring interventional revascularisation were assessed prospectively. All patients underwent a CTP scan of the lower leg, and hemodynamic and angiographic assessment, before and after intervention. Ankle-brachial pressure index (ABI) was determined. CTP parameters were calculated with a perfusion software, acting on a no outflow assumption. A sequential two-compartment model was used. Differences in CTP parameters were assessed with non-parametric tests. Results The cohort consisted of 24 subjects with an occlusion, and five with a high-grade stenosis. The mean blood flow before/after (BFpre and BFpost, respectively) was 7.42 ± 2.66 and 10.95 ± 6.64 ml/100 ml*min−1. The mean blood volume before/after (BVpre and BVpost, respectively) was 0.71 ± 0.35 and 1.25 ± 1.07 ml/100 ml. BFpost and BVpost were significantly higher than BFpre and BVpre in the treated limb (p = 0.003 and 0.02, respectively), but not in the untreated limb (p = 0.641 and 0.719, respectively). Conclusions CTP seems feasible for assessing hemodynamic differences in calf muscles before and after revascularisation in patients with symptomatic PAD. We could show that CTP parameters BF and BV are significantly increased after revascularisation of the symptomatic limb. In the future, this quantitative method might serve as a non-invasive method for surveillance and therapy control of patients with peripheral arterial disease. Key Points • CTP imaging of the lower limb in patients with symptomatic PAD seems feasible for assessing hemodynamic differences before and after revascularisation in PAD patients. • This quantitative method might serve as a non-invasive method, for surveillance and therapy control of patients with PAD.


Sign in / Sign up

Export Citation Format

Share Document