scholarly journals Increased water vapour lifetime due to global warming

Author(s):  
Øivind Hodnebrog ◽  
Gunnar Myhre ◽  
Bjørn H. Samset ◽  
Kari Alterskjær ◽  
Timothy Andrews ◽  
...  

Abstract. The relationship between changes in integrated water vapour (IWV) and precipitation can be characterized by quantifying changes in atmospheric water vapour lifetime. Precipitation isotope ratios correlate with this lifetime, a relationship that helps understand dynamical processes and may lead to improved climate projections. We investigate how water vapour and its lifetime respond to different drivers of climate change, such as greenhouse gases and aerosols. Results from 11 global climate models have been used, based on simulations where CO2, methane, solar irradiance, black carbon (BC), and sulphate have been perturbed separately. A lifetime increase from 8 to 10 days is projected between 1986–2005 and 2081–2100, under a business-as-usual pathway. By disentangling contributions from individual climate drivers, we present a physical understanding of how global warming slows down the hydrological cycle, due to longer lifetime, but still amplifies the cycle due to stronger precipitation/evaporation fluxes. The feedback response of IWV to surface temperature change differs somewhat between drivers. Fast responses amplify these differences and lead to net changes in IWV per degree surface warming ranging from 6.4±0.9 %/K for sulphate to 9.8±2 %/K for BC. While BC is the driver with the strongest increase in IWV per degree surface warming, it is also the only driver with a reduction in precipitation per degree surface warming. Consequently, increases in BC aerosol concentrations yield the strongest slowdown of the hydrological cycle among the climate drivers studied, with a change in water vapour lifetime per degree surface warming of 1.1±0.4 days/K, compared to less than 0.5 days/K for the other climate drivers (CO2, methane, solar irradiance, sulphate).

2019 ◽  
Vol 19 (20) ◽  
pp. 12887-12899 ◽  
Author(s):  
Øivind Hodnebrog ◽  
Gunnar Myhre ◽  
Bjørn H. Samset ◽  
Kari Alterskjær ◽  
Timothy Andrews ◽  
...  

Abstract. Water vapour in the atmosphere is the source of a major climate feedback mechanism and potential increases in the availability of water vapour could have important consequences for mean and extreme precipitation. Future precipitation changes further depend on how the hydrological cycle responds to different drivers of climate change, such as greenhouse gases and aerosols. Currently, neither the total anthropogenic influence on the hydrological cycle nor that from individual drivers is constrained sufficiently to make solid projections. We investigate how integrated water vapour (IWV) responds to different drivers of climate change. Results from 11 global climate models have been used, based on simulations where CO2, methane, solar irradiance, black carbon (BC), and sulfate have been perturbed separately. While the global-mean IWV is usually assumed to increase by ∼7 % per kelvin of surface temperature change, we find that the feedback response of IWV differs somewhat between drivers. Fast responses, which include the initial radiative effect and rapid adjustments to an external forcing, amplify these differences. The resulting net changes in IWV range from 6.4±0.9 % K−1 for sulfate to 9.8±2 % K−1 for BC. We further calculate the relationship between global changes in IWV and precipitation, which can be characterized by quantifying changes in atmospheric water vapour lifetime. Global climate models simulate a substantial increase in the lifetime, from 8.2±0.5 to 9.9±0.7 d between 1986–2005 and 2081–2100 under a high-emission scenario, and we discuss to what extent the water vapour lifetime provides additional information compared to analysis of IWV and precipitation separately. We conclude that water vapour lifetime changes are an important indicator of changes in precipitation patterns and that BC is particularly efficient in prolonging the mean time, and therefore likely the distance, between evaporation and precipitation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


2015 ◽  
Vol 16 (1) ◽  
pp. 306-326 ◽  
Author(s):  
Andrea Soncini ◽  
Daniele Bocchiola ◽  
Gabriele Confortola ◽  
Alberto Bianchi ◽  
Renzo Rosso ◽  
...  

Abstract The mountain regions of the Hindu Kush, Karakoram, and Himalayas (HKH) are considered Earth’s “third pole,” and water from there plays an essential role for downstream populations. The dynamics of glaciers in Karakoram are complex, and in recent decades the area has experienced unchanged ice cover, despite rapid decline elsewhere in the world (the Karakoram anomaly). Assessment of future water resources and hydrological variability under climate change in this area is greatly needed, but the hydrology of these high-altitude catchments is still poorly studied and little understood. This study focuses on a particular watershed, the Shigar River with the control section at Shigar (about 7000 km2), nested within the upper Indus basin and fed by seasonal melt from two major glaciers (Baltoro and Biafo). Hydrological, meteorological, and glaciological data gathered during 3 years of field campaigns (2011–13) are used to set up a hydrological model, providing a depiction of instream flows, snowmelt, and ice cover thickness. The model is used to assess changes of the hydrological cycle until 2100, via climate projections provided by three state-of-the-art global climate models used in the recent IPCC Fifth Assessment Report under the representative concentration pathway (RCP) emission scenarios RCP2.6, RCP4.5, and RCP8.5. Under all RCPs, future flows are predicted to increase until midcentury and then to decrease, but remaining mostly higher than control run values. Snowmelt is projected to occur earlier, while the ice melt component is expected to increase, with ice thinning considerably and even disappearing below 4000 m MSL until 2100.


Author(s):  
Liying Qiu ◽  
Eun-Soon Im

Abstract This study evaluates the resolution dependency of scaling precipitation with temperature from the perspective of the added value of high-resolution (5-km) dynamical downscaling using various kinds of long-term climate change projections over South Korea. Three CMIP5 Global Climate Models (GCMs) with different climate sensitivities, and one pseudo global warming (PGW) experiment, are downscaled by Weather Research and Forecasting (WRF) one-way double nested modeling system with convective parameterization for the reference (1976-2005) and future (2071-2100) periods under RCP8.5 scenario. A detailed comparison of the driving GCM/PGW, 20-km mother simulation, and 5-km nested simulation demonstrates improved representation of precipitation with increasing resolution not only in the spatial pattern and magnitude for both the mean and the extremes, but also in a more realistic representation of extreme precipitation’s sensitivities to temperature. According to the projected precipitation changes downscaled from both GCM ensemble and PGW, there will be intensified precipitation, particularly for the extremes, over South Korea under the warming, which is primarily contributed by CP increase that shows higher temperature sensitivity. This study also compares the extreme precipitation-temperature scaling relations within-epoch (apparent scaling) and between-epoch (climate scaling). It confirms that the magnitude and spatial pattern of the two scaling rates can be quite different, and the precipitation change over Korea under global warming is mainly controlled by thermodynamic factors.


2021 ◽  
Vol 22 (4) ◽  
pp. 905-922
Author(s):  
Jessica C. A. Baker ◽  
Dayana Castilho de Souza ◽  
Paulo Y. Kubota ◽  
Wolfgang Buermann ◽  
Caio A. S. Coelho ◽  
...  

AbstractIn South America, land–atmosphere interactions have an important impact on climate, particularly the regional hydrological cycle, but detailed evaluation of these processes in global climate models has been limited. Focusing on the satellite-era period of 2003–14, we assess land–atmosphere interactions on annual to seasonal time scales over South America in satellite products, a novel reanalysis (ERA5-Land), and two global climate models: the Brazilian Global Atmospheric Model version 1.2 (BAM-1.2) and the U.K. Hadley Centre Global Environment Model version 3 (HadGEM3). We identify key features of South American land–atmosphere interactions represented in satellite and model datasets, including seasonal variation in coupling strength, large-scale spatial variation in the sensitivity of evapotranspiration to surface moisture, and a dipole in evaporative regime across the continent. Differences between products are also identified, with ERA5-Land, HadGEM3, and BAM-1.2 showing opposite interactions to satellites over parts of the Amazon and the Cerrado and stronger land–atmosphere coupling along the North Atlantic coast. Where models and satellites disagree on the strength and direction of land–atmosphere interactions, precipitation biases and misrepresentation of processes controlling surface soil moisture are implicated as likely drivers. These results show where improvement of model processes could reduce uncertainty in the modeled climate response to land-use change, and highlight where model biases could unrealistically amplify drying or wetting trends in future climate projections. Finally, HadGEM3 and BAM-1.2 are consistent with the median response of an ensemble of nine CMIP6 models, showing they are broadly representative of the latest generation of climate models.


Climate ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Ge Peng ◽  
Jessica L. Matthews ◽  
Muyin Wang ◽  
Russell Vose ◽  
Liqiang Sun

The prospect of an ice-free Arctic in our near future due to the rapid and accelerated Arctic sea ice decline has brought about the urgent need for reliable projections of the first ice-free Arctic summer year (FIASY). Together with up-to-date observations and characterizations of Arctic ice state, they are essential to business strategic planning, climate adaptation, and risk mitigation. In this study, the monthly Arctic sea ice extents from 12 global climate models are utilized to obtain projected FIASYs and their dependency on different emission scenarios, as well as to examine the nature of the ice retreat projections. The average value of model-projected FIASYs is 2054/2042, with a spread of 74/42 years for the medium/high emission scenarios, respectively. The earliest FIASY is projected to occur in year 2023, which may not be realistic, for both scenarios. The sensitivity of individual climate models to scenarios in projecting FIASYs is very model-dependent. The nature of model-projected Arctic sea ice coverage changes is shown to be primarily linear. FIASY values predicted by six commonly used statistical models that were curve-fitted with the first 30 years of climate projections (2006–2035), on other hand, show a preferred range of 2030–2040, with a distinct peak at 2034 for both scenarios, which is more comparable with those from previous studies.


2018 ◽  
Author(s):  
Tao Tang ◽  
Drew Shindell ◽  
Bjørn H. Samset ◽  
Oliviér Boucher ◽  
Piers M. Forster ◽  
...  

Abstract. Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare Mediterranean precipitation responses to individual forcing agents in a set of state-of-the-art global climate models (GCMs). Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean, and that precipitation is more sensitive to black carbon (BC) forcing than to well-mixed greenhouse gases (WMGHGs) or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31 ± 17 %) of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs whereas global scattering sulfate aerosols have negligible impacts. The results from this study suggest that future BC emissions may significantly affect regional water resources, agricultural practices, ecosystems, and the economy in the Mediterranean region.


2020 ◽  
Author(s):  
Anja Katzenberger ◽  
Jacob Schewe ◽  
Julia Pongratz ◽  
Anders Levermann

Abstract. The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP-5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP-5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP-6 are of interest. Here, we analyse 32 models of the latest CMIP-6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with high agreement between the models and independent of the SSP; the multi-model mean for JJAS projects an increase of 0.33 mm/day and 5.3 % per degree of global warming. This is significantly higher than in the CMIP-5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP-6 simulations largely confirm the findings from CMIP-5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.


2017 ◽  
Author(s):  
Imme Benedict ◽  
Chiel C. van Heerwaarden ◽  
Albrecht H. Weerts ◽  
Wilco Hazeleger

Abstract. The hydrological cycle of river basins can be simulated by combining global climate models (GCMs) and global hydrological models (GHMs). The spatial resolution of these models is restricted by computational resources and therefore limits the processes and level of detail that can be resolved. To further improve simulations of precipitation and river-runoff on a global scale, we assess and compare the benefits of an increased resolution for a GCM and a GHM. We focus on the Rhine and Mississippi basin. Increasing the resolution of a GCM (1.125° to 0.25°) results in more realistic large-scale circulation patterns over the Rhine and an improved precipitation budget. These improvements with increased resolution are not found for the Mississippi basin, most likely because precipitation is strongly dependent on the representation of still unresolved convective processes. Increasing the resolution of vegetation and orography in the high resolution GHM (from 0.5° to 0.05°) shows no significant differences in discharge for both basins, because the hydrological processes depend highly on other parameter values that are not readily available at high resolution. Therefore, increasing the resolution of the GCM provides the most straightforward route to better results. This route works best for basins driven by large-scale precipitation, such as the Rhine basin. For basins driven by convective processes, such as the Mississippi basin, improvements are expected with even higher resolution convection permitting models.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


Sign in / Sign up

Export Citation Format

Share Document