Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet

2013 ◽  
Vol 7 (3) ◽  
pp. 037104 ◽  
Author(s):  
Agnieszka Baranska ◽  
Ettje Tigchelaar ◽  
Agnieszka Smolinska ◽  
Jan W Dallinga ◽  
Edwin J C Moonen ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1341 ◽  
Author(s):  
Natalia Drabińska ◽  
Elżbieta Jarocka-Cyrta ◽  
Norman Ratcliffe ◽  
Urszula Krupa-Kozak

The concentration of volatile organic compounds (VOCs) can inform about the metabolic condition of the body. In the small intestine of untreated persons with celiac disease (CD), chronic inflammation can occur, leading to nutritional deficiencies, and consequently to functional impairments of the whole body. Metabolomic studies showed differences in the profile of VOCs in biological fluids of patients with CD in comparison to healthy persons; however, there is scarce quantitative and nutritional intervention information. The aim of this study was to evaluate the effect of the supplementation of a gluten-free diet (GFD) with prebiotic oligofructose-enriched inulin (Synergy 1) on the concentration of VOCs in the urine of children and adolescents with CD. Twenty-three participants were randomized to the group receiving Synergy 1 (10 g per day) or placebo for 12 weeks. Urinary VOCs were analyzed using solid-phase microextraction and gas chromatography–mass spectrometry. Sixteen compounds were identified and quantified in urine samples. The supplementation of GFD with Synergy 1 resulted in an average concentration drop (36%) of benzaldehyde in urine samples. In summary, Synergy 1, applied as a supplement of GFD for 12 weeks had a moderate impact on the VOC concentrations in the urine of children with CD.


Lung ◽  
2017 ◽  
Vol 195 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Yu-ichi Yamada ◽  
Gen Yamada ◽  
Mitsuo Otsuka ◽  
Hirotaka Nishikiori ◽  
Kimiyuki Ikeda ◽  
...  

2021 ◽  
Author(s):  
Flavia Casciano ◽  
Lorenzo Nissen ◽  
Andrea Gianotti

Gluten free (GF) foods, designed and marketed for the needs of people who are unable to metabolize gluten, in recent years have aroused growing interest that has led to the conquest of important market segments, with a strongly growing trend.


2016 ◽  
Vol 42 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Silvano Dragonieri ◽  
Vitaliano Nicola Quaranta ◽  
Pierluigi Carratu ◽  
Teresa Ranieri ◽  
Onofrio Resta

We aimed to investigate the effects of age and gender on the profile of exhaled volatile organic compounds. We evaluated 68 healthy adult never-smokers, comparing them by age and by gender. Exhaled breath samples were analyzed by an electronic nose (e-nose), resulting in "breathprints". Principal component analysis and canonical discriminant analysis showed that older subjects (≥ 50 years of age) could not be distinguished from younger subjects on the basis of their breathprints, as well as that the breathprints of males could not distinguished from those of females (cross-validated accuracy, 60.3% and 57.4%, respectively).Therefore, age and gender do not seem to affect the overall profile of exhaled volatile organic compounds measured by an e-nose.


Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 317
Author(s):  
Michalis Koureas ◽  
Paraskevi Kirgou ◽  
Grigoris Amoutzias ◽  
Christos Hadjichristodoulou ◽  
Konstantinos Gourgoulianis ◽  
...  

The aim of the present study was to investigate the ability of breath analysis to distinguish lung cancer (LC) patients from patients with other respiratory diseases and healthy people. The population sample consisted of 51 patients with confirmed LC, 38 patients with pathological computed tomography (CT) findings not diagnosed with LC, and 53 healthy controls. The concentrations of 19 volatile organic compounds (VOCs) were quantified in the exhaled breath of study participants by solid phase microextraction (SPME) of the VOCs and subsequent gas chromatography-mass spectrometry (GC-MS) analysis. Kruskal–Wallis and Mann–Whitney tests were used to identify significant differences between subgroups. Machine learning methods were used to determine the discriminant power of the method. Several compounds were found to differ significantly between LC patients and healthy controls. Strong associations were identified for 2-propanol, 1-propanol, toluene, ethylbenzene, and styrene (p-values < 0.001–0.006). These associations remained significant when ambient air concentrations were subtracted from breath concentrations. VOC levels were found to be affected by ambient air concentrations and a few by smoking status. The random forest machine learning algorithm achieved a correct classification of patients of 88.5% (area under the curve—AUC 0.94). However, none of the methods used achieved adequate discrimination between LC patients and patients with abnormal computed tomography (CT) findings. Biomarker sets, consisting mainly of the exogenous monoaromatic compounds and 1- and 2- propanol, adequately discriminated LC patients from healthy controls. The breath concentrations of these compounds may reflect the alterations in patient’s physiological and biochemical status and perhaps can be used as probes for the investigation of these statuses or normalization of patient-related factors in breath analysis.


2006 ◽  
Vol 27 (5) ◽  
pp. 929-936 ◽  
Author(s):  
M. Barker ◽  
M. Hengst ◽  
J. Schmid ◽  
H-J. Buers ◽  
B. Mittermaier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document