scholarly journals Influence of Molar Concentration: Sol-Gel Synthesized Magnesium Oxide Thin Films for High Power Light Emitting Diode Thermal Management

Author(s):  
M S Idris ◽  
S Shanmugan ◽  
M Devarajan ◽  
W Maryam
Author(s):  
M. Ying ◽  
S. M. L. Nai ◽  
P. Shi ◽  
J. Wei ◽  
C. K. Cheng ◽  
...  

Light-emitting diode (LED) street lamp has gained its acceptance rapidly in the lighting system as one of choices for low power consumption, high reliability, dimmability, high operation hours, and good color rendering applications. However, as the LED chip temperature strongly affects the optical extraction and the reliability of the LED lamps, LED street lamp performance is heavily relied on a successful thermal management, especially when applications require LED street lamp to operate at high power and hash environment to obtain the desired brightness. As such, a well-designed thermal management, which can lower the LED chip operation temperature, becomes one of the necessities when developing LED street lamp system. The current study developed an effective heat dissipation method for the high power LED street lamp with the consideration of design for manufacturability. Different manufacturable structure designs were proposed for the high power street lamp. The thermal contact conductance between aluminum interfaces was measured in order to provide the system assembly guidelines. The module level thermal performance was also investigated with thermocouples. In addition, finite element (FE) models were established for the temperature simulation of both the module and lamp system. The coefficient of natural convection of the heat sink surface was determined by the correlation of the measurement and simulation results. The system level FE model was employed to optimize and verify the heat dissipation concepts numerically. An optimized structure design and prototype has shown that the high power LED street lamp system can meet the thermal performance requirements.


2006 ◽  
Vol 44 (2) ◽  
pp. 138-146 ◽  
Author(s):  
Mira Park ◽  
Byong Hyok Chon ◽  
Hyun Sun Kim ◽  
Sae Chae Jeoung ◽  
Dongho Kim ◽  
...  

2019 ◽  
Vol 234 (10) ◽  
pp. 647-655
Author(s):  
Zohra Nazir Kayani ◽  
Atiqa Aslam ◽  
Rabia Ishaque ◽  
Syeda Nosheen Zahra ◽  
Hifza Hanif ◽  
...  

Abstract Nickel oxide thin films have been prepared by sol-gel dip-coating technique on glass substrate. It is shown that nickel oxide thin films have poly crystalline nature. Nickel oxide thin films exhibit high transmission (39–85%) in the wavelength range of 400–900 nm, strong absorption between 300 and 400 nm wavelengths and decrease of band gap values are in the range 3.69–3.27 eV with increase of withdrawal speed. High band gap at low withdrawal speed is because of the small average crystallite size, which decreases with increase in withdrawal speed. The SEM micrograph shows cubic crystallites and surface of thin films become dense, smooth and homogeneous with an increase in withdrawal speed. Assessment of nickel oxide deposition conditions provides gateway for effective and cheap solar cells.


Sign in / Sign up

Export Citation Format

Share Document