scholarly journals The Effect ofClinacanthus nutans(Burm.f.) Lindau Water Fraction Addition on Hypoglycemia

Author(s):  
C Retnaningsih ◽  
V K Ananingsih ◽  
Meiliana ◽  
E N Anggraeny ◽  
I M Cahyani ◽  
...  
2019 ◽  
Vol 10 (04) ◽  
pp. 646-650
Author(s):  
Hyeusoo Kim ◽  
Kyeong Won Yun

The fruit of Rosa multiflora has been used as traditional herbal medicine in Asian countries. The present investigation was undertaken to study the antimicrobial activity and total polyphenol content of hexane, ether, ethyl acetate, water fraction of methanol extract of fruit and flower from Rosa multiflora and Rosa wichuraiana. Antimicrobial activity of the mentioned fractions against 3 gram-positive and 4 gram-negative bacteria using disk diffussion method. The measurement of minimal inhibition concentration (MIC) showed that the ethyl acetate fraction of the two Rosa species is the most effective against the tested bacteria. The total polyphenol content of ethyl acetate fraction of the two Rosa species is higher than the other fractions. The results indicate the antimicrobial activity was related with the total polyphenol content and the fruit and flower of the two Rosa species can be considered as a natural source of antimicrobial agents.


1992 ◽  
Vol 23 (2) ◽  
pp. 89-104 ◽  
Author(s):  
Ole H. Jacobsen ◽  
Feike J. Leij ◽  
Martinus Th. van Genuchten

Breakthrough curves of Cl and 3H2O were obtained during steady unsaturated flow in five lysimeters containing an undisturbed coarse sand (Orthic Haplohumod). The experimental data were analyzed in terms of the classical two-parameter convection-dispersion equation and a four-parameter two-region type physical nonequilibrium solute transport model. Model parameters were obtained by both curve fitting and time moment analysis. The four-parameter model provided a much better fit to the data for three soil columns, but performed only slightly better for the two remaining columns. The retardation factor for Cl was about 10 % less than for 3H2O, indicating some anion exclusion. For the four-parameter model the average immobile water fraction was 0.14 and the Peclet numbers of the mobile region varied between 50 and 200. Time moments analysis proved to be a useful tool for quantifying the break through curve (BTC) although the moments were found to be sensitive to experimental scattering in the measured data at larger times. Also, fitted parameters described the experimental data better than moment generated parameter values.


Author(s):  
Johannes Mayer ◽  
Thomas-Heinrich Wurster ◽  
Tobias Schaeffter ◽  
Ulf Landmesser ◽  
Andreas Morguet ◽  
...  

Abstract Background Cardiac PET has recently found novel applications in coronary atherosclerosis imaging using [18F]NaF as a radiotracer, highlighting vulnerable plaques. However, the resulting uptakes are relatively small, and cardiac motion and respiration-induced movement of the heart can impair the reconstructed images due to motion blurring and attenuation correction mismatches. This study aimed to apply an MR-based motion compensation framework to [18F]NaF data yielding high-resolution motion-compensated PET and MR images. Methods Free-breathing 3-dimensional Dixon MR data were acquired, retrospectively binned into multiple respiratory and cardiac motion states, and split into fat and water fraction using a model-based reconstruction framework. From the dynamic MR reconstructions, both a non-rigid cardiorespiratory motion model and a motion-resolved attenuation map were generated and applied to the PET data to improve image quality. The approach was tested in 10 patients and focal tracer hotspots were evaluated concerning their target-to-background ratio, contrast-to-background ratio, and their diameter. Results MR-based motion models were successfully applied to compensate for physiological motion in both PET and MR. Target-to-background ratios of identified plaques improved by 7 ± 7%, contrast-to-background ratios by 26 ± 38%, and the plaque diameter decreased by −22 ± 18%. MR-based dynamic attenuation correction strongly reduced attenuation correction artefacts and was not affected by stent-related signal voids in the underlying MR reconstructions. Conclusions The MR-based motion correction framework presented here can improve the target-to-background, contrast-to-background, and width of focal tracer hotspots in the coronary system. The dynamic attenuation correction could effectively mitigate the risk of attenuation correction artefacts in the coronaries at the lung-soft tissue boundary. In combination, this could enable a more reproducible and reliable plaque localisation.


2021 ◽  
Vol 13 (4) ◽  
pp. 723
Author(s):  
Hossain Zadhoush ◽  
Antonios Giannopoulos ◽  
Iraklis Giannakis

Estimating the permittivity of heterogeneous mixtures based on the permittivity of their components is of high importance with many applications in ground penetrating radar (GPR) and in electrodynamics-based sensing in general. Complex Refractive Index Model (CRIM) is the most mainstream approach for estimating the bulk permittivity of heterogeneous materials and has been widely applied for GPR applications. The popularity of CRIM is primarily based on its simplicity while its accuracy has never been rigorously tested. In the current study, an optimised shape factor is derived that is fine-tuned for modelling the dielectric properties of concrete. The bulk permittivity of concrete is expressed with respect to its components i.e., aggregate particles, cement particles, air-voids and volumetric water fraction. Different combinations of the above materials are accurately modelled using the Finite-Difference Time-Domain (FDTD) method. The numerically estimated bulk permittivity is then used to fine-tune the shape factor of the CRIM model. Then, using laboratory measurements it is shown that the revised CRIM model over-performs the default shape factor and provides with more accurate estimations of the bulk permittivity of concrete.


Author(s):  
Jose Plasencia ◽  
Nathanael Inkson ◽  
Ole Jørgen Nydal

AbstractThis paper reports experimental research on the flow behavior of oil-water surfactant stabilized emulsions in different pipe diameters along with theoretical and computational fluid dynamics (CFD) modeling of the relative viscosity and inversion properties. The pipe flow of emulsions was studied in turbulent and laminar conditions in four pipe diameters (16, 32, 60, and 90 mm) at different mixture velocities and increasing water fractions. Salt water (3.5% NaCl w/v, pH = 7.3) and a mineral oil premixed with a lipophilic surfactant (Exxsol D80 + 0.25% v/v of Span 80) were used as the test fluids. The formation of water-in-oil emulsions was observed from low water fractions up to the inversion point. After inversion, unstable water-in-oil in water multiple emulsions were observed under different flow regimes. These regimes depend on the mixture velocity and the local water fraction of the water-in-oil emulsion. The eddy turbulent viscosity calculated using an elliptic-blending k-ε model and the relative viscosity in combination act to explain the enhanced pressure drop observed in the experiments. The inversion process occurred at a constant water fraction (90%) and was triggered by an increase of mixture velocity. No drag reduction effect was detected for the water-in-oil emulsions obtained before inversion.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ilias Marmouzi ◽  
Shahira M. Ezzat ◽  
Eman Sherien Mostafa ◽  
Meryem El Jemli ◽  
Rasha Ali Radwan ◽  
...  

AbstractDespite the richness and biodiversity of invertebrates and algae in the Mediterranean Sea, these organisms are still poorly studied. The objective of our research is the discovery of bioactive lead compounds from the Mediterranean Sea sponge Hemimycale Collumella (HC). HC sponge (189.0 g) was collected from Mdiq costs on the Mediterranean Sea and extracted with methanol to yield (10 g) which was then subjected to fractionation. A bio-guided protocol was applied through evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and Oxygen Radical Absorbance Capacity (ORAC), α-amylase, β-glucosidase, pancreatic lipase inhibition as well as anti-collagenase, anti-elastase, antityrosinase and cytotoxic activity. 2,3-O-Hexahydroxydiphenoyl-(α/β)-glucose (1) and gentisic acid 2-O-β-glucoside (2) were isolated from the water fraction, quercetin-3-O-β-glucopyranoside (3), kaempferol 3-O-β-glucopyranoside (4) and isorhamnetin 3-O-β-glucopyranoside (5) from n-butanol fraction, gallic acid (6) from ethyl acetate fraction and gallic acid-3-methyl ether (7) from methylene chloride fraction. Compound 5 had the highest DPPH and ORAC activity. Compounds 1–5 had promising lipase inhibition activities which exceeded that of the standard Orlistat, while compounds 1–7 showed anti-tyrosinase activity higher than that of the standard Hydroquinone monomethyl ether. This is the first report for evaluation of the biological activities of 2, 3-O-hexahydroxydiphenoyl-(α/β)-glucose (1), gentisic acid 2-O-β-glucoside (2) and gallic acid-3-methyl ether (7).


Heliyon ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. e06709
Author(s):  
Bretta Russell-Schulz ◽  
Irene M. Vavasour ◽  
Jing Zhang ◽  
Alex L. MacKay ◽  
Victoria Purcell ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Marc Strasser ◽  
Peky Noriega ◽  
Raimar Löbenberg ◽  
Nádia Bou-Chacra ◽  
Elfriede M. Bacchi

This paper provides evidence that the leaves and stem ofPassiflora serratodigitataL. dry crude extract (DCE), ethylacetate fraction (EAF), and residual water fraction show potential antiulcerogenic activity. Interestingly, the polymeric nanocapsule loaded with EAF had 10-fold more activity than the free EAF. Furthermore, the polymer nanoparticles provided homogeneous colloidal drug delivery systems and allowed overcoming challenges such as poor aqueous solubility as well as the physical-chemical instability of the organic extract, which presented 90% (w/w) of the flavonoid content. The entrapment efficiency of the total flavonoid was 90.6 ± 2.5% (w/v) for the DCE and 79.9 ± 2.7% (w/v) for the EAF. This study shows that nanoencapsulation improves both the physicochemical properties and the efficacy of the herbal formulations. Therefore, free and encapsulated extracts have the potential to be suitable drug design candidates for the therapeutic management of ulcer.


2018 ◽  
Vol 183 ◽  
pp. 01054
Author(s):  
Elisha Rejovitzky

The design of protective structures often requires numerical modeling of shock-wave propagation in the surrounding soils. Properties of the soil such as grain-grading and water-fraction may vary spatially around a structure and among different sites. To better understand how these properties affect wave propagation we study how the meso-structure of soils affects their equation of state (EOS). In this work we present a meso-mechanical model for granular materials based on a simple representation of the grains as solid spheres. Grain-grading is prescribed, and a packing algorithm is used to obtain periodic grain morphologies of tightly packed randomly distributed spheres. The model is calibrated by using experimental data of sand compaction and sound-speed measurements from the literature. We study the effects of graingrading and show that the pressures at low strains exhibit high sensitivity to the level of connectivity between grains. At high strains, the EOS of the bulk material of the grains dominates the behavior of the EOS of the granular material.


Sign in / Sign up

Export Citation Format

Share Document