scholarly journals Assessing cooling energy of insulated building built in tropical country

2021 ◽  
Vol 881 (1) ◽  
pp. 012016
Author(s):  
R C P Sigalingging

Abstract Global warming is a huge issue and has become a global concern lately. The global warming issue is gaining more attention on reducing fossil energy since fossil energy has significantly exacerbated global warming. Since housing sectors are consuming significant fossil fuel energy, reducing housing energy consumption is necessary. One option discussed in this paper is to reduce the load on the air conditioner (AC) by applying insulation to the building. Reducing the AC energy will reduce the total energy consumption in the buildings. Building practice in a mild climate has shown that good insulation can reduce heating or cooling energy in the building. But using insulation in housing is not a common practice in Indonesia’s construction sectors. Simulating the use of insulation in housing will show how much energy reduction will be obtained, especially for air conditioning energy. The analysis in this study found that thermal comfort is related to air temperature and relative humidity in the room. This article will study the reliability of using insulation in buildings to reduce energy consumption and provide thermal comfort for the occupant.

2019 ◽  
Vol 3 (3) ◽  
pp. 267
Author(s):  
Andi Asrul Sani ◽  
Adelia Enjelina Matondang ◽  
Guruh Kristiadi Kurniawan ◽  
Anggi Mardiyanto

Abstract: The use of glass material should consider the comfort of space in the building. Field of glass is needed as natural lighting and visual facilities between the occupants and the surrounding environment. Its function as natural lighting is often accompanied by an increase in temperature in buildings, considering that Indonesia is a tropical country. Building temperatures that increase due to incoming sunlight can cause discomfort to building occupants. Such conditions make building occupants use air conditioner (AC). The use of air conditioners can increase the value of building energy consumption. For this reason, research on the value of heat transfer in buildings or the value of OTTV (Overall Thermal Transfer Value). OTTV value calculation is done by manual calculation. Bandar Lampung City lecture building at the Sumatra Institute of Technology was chosen as the object of this study. From the results of the study found that the value of heat transfer of a building or OTTV (Overall Thermal Transfer Value) is influenced by the factor of the ratio of the window area to the facade or WWR (Window Wall Ratio) and the shading factor (Shading Coefficient).(Keywords: Keyword: energy consumption, building energy, glass. Abstract: Penggunaan material kaca semestinya mempertimbangkan kenyamanan ruang dalam bangunan. Bidang kaca diperlukan sebagai pencahayaan alami dan sarana visual antara penghuni dan lingkungan sekitar. Fungsinya sebagai pencahayaan alami seringkali disertai dengan peningkatan temperatur pada bangunan, mengingat Indonesia merupakan negara yang beriklim tropis. Temperatur bangunan yang meningkat akibat dari radiasi sinar matahari yang masuk dapat menyebabkan ketidaknyamanan bagi penghuni bangunan. Kondisi seperti itu membuat penghuni bangunan menggunakan air conditioner (AC). Penggunaan air conditioner tersebut dapat meningkatkan nilai konsumsi energi bangunan. Untuk  itu dilakukan penelitian mengenai nilai perpindahan panas dalam bangunan atau nilai OTTV (Overall Thermal Transfer Value). Penghitungan nilai OTTV dilakukan dengan penghitungan manual. Gedung kuliah Kota Bandar Lampung di Institut Teknologi Sumatera di pilih sebagai objek dalam penelitian ini. Dari hasil penelitian ditemukan bahwa nilai perpindahan panas suatu bangunan atau OTTV (Overall Thermal Transfer Value) dipengaruhi oleh faktor nilai perbandingan luas jendela terhadap bidang fasad atau WWR (Window Wall Ratio) dan faktor pembayangan (Shading Coefficient).Kata kunci : konsumsi energi, energi bangunan, kaca.


2021 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Hassan Bazazzadeh ◽  
Adam Nadolny ◽  
Seyedeh Sara Hashemi Safaei

The growth of urban population as the result of economic and industrial development has changed our place of living from a prosperous place to where the resources are carelessly consumed. On the other hand, long-term climate change, i.e. global warming, has had adverse impact on our resources. Certain resources are on the verge of depletion as the consequence of climate change and inconsiderate consumption of resources, unless serious measures are implemented immediately. The building sector, whose share in the municipal energy consumption is considerably high, is a key player that may successfully solve the problem. This paper aims to study the effects of climate change on the energy consumption of buildings and analyze its magnitude to increase the awareness of how construction can reduce the overall global energy consumption. A descriptive-analytical method has been applied to analyze valid models of energy consumption according to different scenarios and to interpret the conditions underlying current and future energy consumption of buildings. The results clearly show that the energy consumption in the building sector increasingly depends on the cooling demand. With that being said, we can expect the reduction of overall energy consumption of buildings in regions with high heating demands, whereas rising the energy consumption in buildings is expected in regions with high cooling demand. To conclude, the long-term climate change (e.g. global warming) underlies the increased energy consumption for the cooling demand whose share in total energy consumption of buildings much outweighs the heating demand. Therefore, to conserve our resources, urban energy planning and management should focus on working up a proper framework of guidelines on how to mitigate the cooling loads in the energy consumption patterns of buildings.


2011 ◽  
Vol 224 ◽  
pp. 192-197
Author(s):  
Jing Wu ◽  
Hao Xie

Building energy conservation has become the worldwide tendency since the mid-1970s. The Theory of Sustainable Development raised in 1990s as well as the deterioration of ecological environment made the building energy conservation became the international focus all over the world. China is a country with high energy consumption and large population and the percentage of its building energy consumption has reached about 25% on total energy consumption. The energy conservation condition of building external wall is one of the direct influencing factors of thermal comfort of indoor environment. However, greening is a kind of natural sunshade of the nature. The key to the study is how to improve the temperature of building walls and thermal comfort of indoor environment by the way of greening sunshade of external walls.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 964 ◽  
Author(s):  
Florinda Martins ◽  
Carlos Felgueiras ◽  
Miroslava Smitkova ◽  
Nídia Caetano

The use of fossil fuels as the main source of energy for most countries has caused several negative environmental impacts, such as global warming and air pollution. Air pollution causes many health problems, causing social and economic negative effects. Worldwide efforts are being made to avoid global warming consequences through the establishment of international agreements that then lead to local policies adapted to the development of each signing nation. In addition, there is a depletion of nonrenewable resources which may be scarce or nonexistent in future generations. The preservation of resources, which is a common goal of the Circular Economy strategy and of sustainable development, is not being accomplished nowadays. In this work, the calculation of indicators and mathematical and statistical analysis were applied to clarify and evidence the trends, provide information for the decision-making process, and increase public awareness. The fact that European countries do not possess abundant reserves of fossil fuels will not change, but the results of this analysis can evolve in the future. In this work, fossil fuel energy consumption, fossil fuel depletion, and their relationship with other variables, such as energy dependence and share of renewable energy in gross final energy consumption, were analyzed for 29 European countries. Furthermore, it was possible to conclude that many European countries still depend heavily on fossil fuels. Significant differences were not found in what concerns gross inland consumption per capita when the Kruskal–Wallis test was applied. It was possible to estimate that by 2050 (considering Jazz scenario) it will only remain approximately 14% of oil proven reserves, 72% of coal proven reserves and 18% of gas proven reserves. Given the small reserves of European countries on fossil fuels, if they need to use them, they will fast disappear.


2020 ◽  
Vol 4 (1) ◽  
pp. 73
Author(s):  
Asep Yudi Permana ◽  
Karto Wijaya ◽  
Hafiz Nurrahman ◽  
Aathira Farah Salsabilla Permana

Abstract: Energy efficiency is a top priority in design, because design errors that result in wasteful energy will impact operational costs as long as the building operates. The opening protection in the facade should be adjusted according to their needs, for optimum use of sky light. Inhibiting the entry of solar heat into the room through the process of radiation, conduction or convection, optimum use of sky light and efforts to use building skin elements for shading are very wise efforts for energy savings. House construction planning must be careful and consider many things, including: physical potential. Physical potential is a consideration of building materials, geological conditions and local climate. Related to the issue of global warming that occurs in modern times, climate is a major consideration that needs to be resolved.The purpose of building design, especially in residential homes aims to create amenities for its inhabitants. Amenities are achieved through physical comfort, be it spatial comfort, thermal comfort, auditory comfort, or visual comfort.Energy waste is also caused by building designs that are not well integrated and even wrong and are not responsive to aspects of function, and climate. This is worsened by the tendency of the designers to prioritize aesthetic aspects (prevailing trends). The issue of green concepts and energy consumption efficiency through the Net Zero-Energy Buildings (NZE-Bs) program from the housing sector as a response to tackling global warming is already familiar in Indonesia, although its application has not yet been found significantly. Green concepts offered by housing developers are often merely marketing tricks and are not realized and grow the responsibility of the residents to look after them. Due to the lack of understanding of the green concept, housing developers tend to offer more a beautiful and green housing environment, not the actual green concept.Keyword: Socio-culture, Energy efficiency, Energy consumption, Environment. The green conceptAbstrak: Efisiensi energi merupakan prioritas utama dalam disain, karena kesalahan disain yang berakibat boros energi akan berdampak terhadap biaya opersional sepanjang bangunan tersebut beroperasi. Pelindung bukaan pada fasade sebaiknya dapat diatur sesuai kebutuhannya, untuk pemanfaatan terang langit seoptimal mungkin. Penghambatan masuknya panas matahari kedalam ruangan baik melalui proses radiasi, konduksi atau konveksi, pemanfaatan terang langit seoptimal mungkin serta upaya pemanfaatan elemen kulit bangunan untuk pembayangan merupakan upaya yang sangat bijaksana bagi penghematan energi. Perencanaan pembangunan rumah harus cermat dan mempertimbangkan banyak hal, antara lain: potensi fisik. Potensi fisik adalah pertimbangan akan bahan bangunan, kondisi geologis dan iklim setempat. Terkait dengan isu pemanasan global yang terjadi pada masa modern ini, iklim menjadi sebuah pertimbangan utama yang perlu diselesaikan.Tujuan desain bangunan khususnya pada rumah tinggal bertujuan menciptakan amenities bagi penghuninya. Amenities dicapai melalui kenyamanan fisik, baik itu spatial comfort, thermal comfort, auditory comfort, maupun visual comfort.Pemborosan energi juga disebabkan oleh desain bangunan yang tidak terintegrasi dengan baik bahkan salah dan tidak tanggap terhadap aspek fungsi, serta iklim. Hal tersebut diperparah yang kecenderungan para perancang lebih mementingkan aspek estetis (tren yang berlaku). Isu konsep hijau dan efisiensi konsumsi energi melalui program Net Zero-Energy Buildings (NZE-Bs) dari sektor perumahan sebagai respon untuk menanggulangi pemanasan global sudah tidak asing di Indonesia, walaupun penerapannya masih belum dapat ditemukan secara signifikan. Konsep hijau yang ditawarkan oleh pengembang perumahan seringkali hanya sebagai trik pemasaran belaka dan tidak diwujudkan serta ditumbuhkan tanggung jawab para penghuni untuk menjaganya. Akibat minimnya pemahaman mengenai konsep hijau tersebut, para pengembang perumahan cenderung lebih banyak menawarkan lingkungan perumahan yang asri dan hijau, bukan konsep hijau yang sebenarnya.Kata Kunci: Sosio-kultur, Efisiensi Energi, Konsumsi energi, Lingkungan, Konsep Hijau


2007 ◽  
Vol 37 (3) ◽  
pp. 405-417 ◽  
Author(s):  
David Rosnick ◽  
Mark Weisbrot

European employees work fewer hours per year, and use less energy per person, than their American counterparts. This article compares the European and U.S. models of labor productivity, supply, and energy consumption. It finds that if employees in the EU-15 worked as many hours as those in the United States, they would consume at least 15 percent more energy. This aspect of the debate over Europe's economic model reaches globally. Over the coming decades, developing countries will decide how to make use of their increasing productivity. If, by 2050, the world works as do Americans, total energy consumption could be 15 to 30 percent higher than it would be if following a more European model. Translated directly into higher carbon emissions, this could mean an additional 1 to 2 degrees Celsius in global warming.


2020 ◽  
Vol 8 (1) ◽  
pp. 46-56
Author(s):  
César Ramos Broliato ◽  
Carlos Roberto Altafini ◽  
Carlos Alberto Costa

Air conditioning for buses is an important incentive tool for the public transport, since it offers comfort to passengers and stimulates the use of this kind of transport which is fundamental to improve urban mobility. Currently, air conditioning equipment for buses is the mechanical vapor compression (MVC) type. However, this kind of system has two main disadvantages: the high financial cost and power consumption by the vehicle engine. The purpose of this study is to develop an evaporative cooler for buses, which is a simple, environmental friendly, low-cost solution that does not use engine power for its operation. The first step was the design and construction of the prototype. The following step was to evaluate the built prototype through performing experimental tests. The prototype presented a saturation efficiency of approximately 70%, airflow rate of 421.5 m³/h and energy consumption of 98.4 W. After determining the prototype technical characteristics, the evaporative cooling system was developed for an urban bus, seeking to meet the air renewal required by ANSI/ASHRAE standard 62.1 and to promote the passenger’s thermal comfort as specified by ISO 7730 and ANSI/ASHRAE Standard 55. The thermal comfort provided by the new cooling system was evaluated through the PMV-PPD indexes. A value of 0.35 was obtained for the PMV index and the PPD index obtained a value of 7, indicating that approximately 93% of the passengers will be satisfied regarding their thermal comfort for the established environmental conditions. The evaporative cooling system had a total energy consumption of approximately 0.4 kW, which represents only 5% of the energy that would be consumed by a MVC system. Therefore, the evaporative cooling performance depends on the climatic conditions of the environment, especially humidity. However, when applied in favorable conditions (low humidity), the evaporative cooling system proved to be a viable solution to replace the MVC systems in buses air-conditioning application, where its main advantage is its positive cost-benefit and energy savings.


Author(s):  
Galih Gusti Yudha Saelendra ◽  
Jatmiko Adi Suryabrata ◽  
Dimas Wihardyanto

ABSTRACT Increasing the natural lighting can reduce the lighting energy consumption haw a weather but it can be potentially increasing the weather energy so there must be strategy needed to save the energy. That condition is the problem statement of this research, to know the configuration of the natural lighting and the effective cooling load. In this research, the simulation method with hypothetic building object has been used to test how big the influence of courtyard dimension, (Wall To Window Ratio) WWR and glass type towards the total consumption of energy for AC (Air Conditioner) and lighting. The result of this research is the most affective courtyard configuration is courtyard dimension 1, WWR 30 %, stopsol glass type. From the courtyard dimension variable, WWR and glass type, for the total energy consumption for AC and the highest lighting influenced its energy efficiency is clear glass type 15,56%, panashap glass 9,09%, WWR 70% 6,25%, WWR 50% 1,91%, courtyard dimension 2 0,27%, courtyard dimension 3 0,18%. In Jakarta with the tropical climate is not suitable to apply the courtyard application which is too big, it must be concerned the wide and high proposition so the total energy consumption for AC and lighting would not be so big. While the open orientation is not so influencing the sun radiation, so avoid the open part from east and west. For the WWR building range is between 50% - 70% must be paid attention in choosing the glass type because as small as the SC (Shading Coefficient) is lower the sun radiation. Keywords : AC (Air Conditioner), Courtyard, Glass type, Lighting, WWR. ABSTRAK Meningkatkan pencahayaan alami dapat mengurangi konsumsi energi pencahayaan namun, berpotensi meningkatkan energi penghawaan maka diperlukan strategi untuk penghematan energi. Kondisi tersebut yang menjadi permasalahan dalam kajian ini, untuk mengetahui konfigurasi pencahayaan alami dan beban pendinginan yang efektif. Dalam kajian ini digunakan metode simulasi dengan objek bangunan hipotetik untuk menguji besar pengaruh dimensi courtyard, (Wall To Window Ratio) WWR dan Jenis kaca terhadap total konsumsi energi untuk AC (air conditioner) dan pencahayaan. Hasil dari kajian ini adalah konfigurasi courtyard yang paling efektif yaitu dimensi courtyard 1, WWR 30%, jenis kaca stopsol. Dari variabel dimensi courtyard, WWR dan jenis kaca, untuk total konsumsi energi untuk AC dan pencahayaan yang paling tinggi berpengaruh dalam efesiensi energinya adalah jenis kaca clear 15.56%, kaca panashap 9.09%, WWR 70% 6,25%, WWR 50% 1,91%, dimensi courtyard 2 0.27%, dimensi courtyard 3 0.18%. Pada kota Jakarta dengan kondisi iklim tropis kurang cocok untuk pengaplikasian courtyard yang terlalu besar, harus di perhatikan proporsi lebar dan tinggi courtyard agar total konsumsi energi untuk AC dan pencahayaan tidak terlalu besar. Sedangkan orientasi bukaan sangat berpengaruh terhadap radiasi matahari, sehingga hindari bukaan dari arah timur dan barat. Untuk range WWR bangunan antara 50 -70% perlu di perhatikan dalam memilih jenis kaca karena semakin kecil SC (Shading Coefficient) maka semakin rendah radiasi matahari. Kata kunci: AC (Air Conditioner), Courtyard, Jenis kaca, Pencahayaan, WWR.


2017 ◽  
Vol 2 (3) ◽  
pp. 320-329 ◽  
Author(s):  
Diler Haji Morad ◽  
Serbest Khalil Ismail

The hot and dry climate conditions in Erbil city has a main effect on the energy consumption and thermal performance of the house. In the last decade, residential sector in Kurdistan region government has consumed about 50% of total energy consumption. The contemporary dwelling did not consider climate consideration therefore; there was difficulty in achieving or obtaining thermal comfort conditions, without using electrical or mechanical devices like air- conditioning. In contrast, traditional houses carefully and effectively designed with climate conditions. In the present study, in order to determine suitable architectural strategy that may be benefit in future housing designs, the climate response strategies and thermal comfort examined in both traditional and contemporary houses in Erbil city and evaluated in terms of building form, orientation, occupancy migration, plan arrangement, window, ventilation, shading, Vegetation, water bodies building materials and Urban Fabric. At the end of this study, a simplified evaluation and comparison between contemporary and traditional house are given.


Sign in / Sign up

Export Citation Format

Share Document