scholarly journals Fast composting of food waste using thermal composter

2021 ◽  
Vol 896 (1) ◽  
pp. 012013
Author(s):  
B Zaman ◽  
N Hardyanti ◽  
P Purwono

Abstract Composting is an effective method to treat food waste. If food waste can be reduced from households, the transportation process to landfills can be reduced, cheaper costs, and the amount of waste in landfills. In this study, an innovative composting device-thermal composter was developed to accelerate the composting of food waste at home. This study uses food waste in a mixture of Chinese cabbage (Brassica rapa subsp. pekinensis) and rice from a household in Semarang, Indonesia. Food waste was chopped, stirred, heated, and decomposed in a thermal composter. The composting was carried out for three days with moisture content, pH, electrical conductivity, volatile solids, C-Organic, N-Total, P-Total, K-Total, plant growth test (Vigna radiata). The results showed that the growth of Vigna radiata using compost on the third day was better than on the first day. Final compost quality has water content = 75.16%, pH = 7.09, electrical conductivity = 552 Scm−1, volatile solid = 76.45 %, C-Organic = 7.05%, N-Total= 0.433 %, P-Total= 0.147 mg P2O5/100 g, K-Total= 0.149 mg K2O/100 g. It indicates that food waste can be recycled into useful products on a household scale within three days.

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 284
Author(s):  
Xiaojue Li ◽  
Naoto Shimizu

To enhance anaerobic fermentation during food waste (FW) digestion, pretreatments can be applied or the FW can be co-digested with other waste. In this study, lipase addition (LA), hydrothermal pretreatment (HTP), and a combination of both methods (HL) were applied to hydrolyze organic matter in FW. Furthermore, the effects of crude glycerol (CG), which provided 5%, 10%, and 15% of the volatile solids (VS) as co-substrate (denoted as CG5, CG10, and CG15, respectively), on the anaerobic digestion of FW were assessed. With an increasing proportion of CG in the co-digestion experiment, CG10 showed higher methane production, while CG15 negatively affected the anaerobic digestion (AD) performance owing to propionic acid accumulation acidifying the reactors and inhibiting methanogen growth. As the pretreatments partially decomposed hard-to-degrade substances in advance, pretreated FW showed a stronger methane production ability compared with raw FW, especially using the HL method, which was significantly better than co-digestion. HL pretreatment was shown to be a promising option for enhancing the methane potential value (1.773 NL CH4/g VS) according to the modified Gompertz model.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4255-4260 ◽  
Author(s):  
BONG-SEO KIM ◽  
SU-DONG PARK ◽  
HEE-WOONG LEE ◽  
DONG-YOON LEE ◽  
WON-SUB CHUNG

The electronic states of manganese dioxide substituted with transition metals were theoretically calculated by DV-Xα method, cluster model was Mn 15 O 56 and Mn 14 XO 56 (X = transition metal). The energy band gap of manganese-X oxides is lower than that of manganese dioxide from theoretical calculation. Also it is identified that the electrical conductivity of manganese-tungsten oxide is better than that of manganese dioxide from experiment of anodic deposition method. It is confirmed that the theoretical calculation coincides with experimental results.


AgriPeat ◽  
2019 ◽  
Vol 18 (02) ◽  
pp. 113-124
Author(s):  
Journal Journal

                                                                                                                                   ABSTRAK Kelapa sawit merupakan tanaman perkebunan yang memegang peranan penting dalam industri pangan. Luas perkebunan kelapa sawit di Indonesia pada tahun 2014 mencapai 10 juta Ha. Pertumbuhan yang pesat diikuti dengan produksi crude palm oil (CPO) dan palm karnel oil (PKO) yang juga meningkat, sekaligus produk sampingan berupa limbah. Salah satu limbah pabrik kelapa sawit yang jumlahnya besar adalah tandan kosong kelapa sawit (TKKS). Tandan kosong kelapa sawit merupakan limbah organik yang berpotensi dimanfaatkan dibidang pertanian. Akan tetapi, TKKS memiliki nilai C/N yang cukup tinggi, akibatnya sukar dan lama untuk terdekomposisi. Salah satu cara pemanfaatan TKKS adalah dengan dilakukan pengomposan dengan pengkayaan urea. Diharapkan dengan perlakuan tersebut TKKS akan cepat terdekomposisi dan dapat segera dimanfaatkan oleh tanaman. Penelitian ini bertujuan untuk (1) mengetahui pengaruh pemberian urea terhadap pengomposan TKKS dan (2) mengetahui pengaruh peningkatan dosis urea terhadap kualitas kompos TKKS. Rancangan yang digunakan dalam penelitian ini adalah Rancangan Acak Lengkap (RAL) faktor tunggal dengan 5 perlakuan, yaitu U1 (urea 0 g setara dengan nilai C/N=), U2 (urea 30,9 g setara dengan nilai C/N=), U3 (urea 79,3 g setara dengan nilai C/N=), U4 (urea 176,1 g setara dengan nilai C/N=) dan U5 (urea 466,3 g setara dengan C/N = ) dan 9 ulangan, sehingga diperoleh 45 satuan percobaan. Hasil penelitian menunjukan bahwa pemberian urea berpengaruh sangat nyata terhadap susut bobot, kadar air, nilai pH kompos, C-organik, N-total, P-tersedia, dan nilai C/N, selain itu pemberian urea mengakibatkan terjadi perubahan tekstur dan warna pada kompos TKKS. Pemberian dosis urea 466,3 g mampu meningkatkan kandungan N-total, serta menurunkan nilai C/N dan nilai pH kompos. Pemberian dosis urea 79,3 g atau setara dengan C/N = mampu meningkatkan kandungan P-tersedia dan kadar air, menurunkan susut bobot dan kandungan C-organik, serta menunjukan perubahan tekstur dan warna yang lebih baik. Kata kunci: tanda kosongkelapa sawit (TKSS), kompos, urea                                                                                                                                        ABSTRACT Empty fruit bunches (EFB) is a solid wastes produced in large quantity from palm oil industry. Empty fruit bunches can be used as compost material, additionally difficult to decompose because it contain cellulose, hemicellulose, and lignin, as well as value of ratio C/N is high. Use EFB as compost material through the provision of urea has been done in this research. Urea are expected to reduce the value of ratio C/N and became a starter for microbial decomposers. The purpose of this research were (1) to determine the effect of urea on composting of EFB and (2) to determine the effect of increasing doses of urea to the quality of compost of EFB. This research was used a single factor of Completely Randomized Design (CRD) with 5 treatments, namely U1 (urea 0 g), U2 (urea 30,9 g), U3 (urea 79,3 g), U4 (urea 176,1 g), and U5 (urea 466,3 g), and 9 replications, until result 45 experimental units. The result showed that urea significant effect on weight loss, water content, value of pH compost, C-organic, N-total, P-available, and value of ratio C/N, besides urea resulted Widodoe, K. dkk Percepatan Pengomposan Tandan Kosong Kelapa Sawit…..…. 114 in a change in texture and color on the compost EFB. Application of urea 466,3 g was able to increase the content of N-total, reduce the value of ratio C/N and the value of pH compost. Application of urea 79,3 g can improve the content of P-available and water content, reduce the weight loss and the content of C-organic, and showed the changes in texture and color as better. Keywords: empty fruit bunches, compost, urea


2001 ◽  
Vol 44 (11-12) ◽  
pp. 61-67 ◽  
Author(s):  
S-Y. Kim ◽  
P.M. Geary

Two species of macrophytes, Baumea articulata and Schoenoplectus mucronatus, were examined for their capacity to remove phosphorus under nutrient-rich conditions. Forty large bucket systems with the two different species growing in two types of substrate received artificial wastewaters for nine months, simulating a constructed wetland (CW) under high loading conditions. Half of the plants growing in the topsoil and gravel substrates were periodically harvested whereas the other half remained intact. Plant tissue and substrate samples were regularly analysed to determine their phosphorus concentrations. With respect to phosphorus uptake and removal, the Schoenoplectus in the topsoil medium performed better than the Baumea. Biomass harvesting enhanced P uptake in the Schoenoplectus, however the effect was not significant enough to make an improvement on the overall P removal, due to the slow recovery of plants and regrowth of biomass after harvesting. From P partitioning, it was found that the topsoil medium was the major P pool, storing most of total P present in the system. Plant parts contributed only minor storage with approximately half of that P stored below ground in the plant roots. The overall net effect of harvesting plant biomass was to only remove less than 5% of total phosphorus present in the system.


2019 ◽  
Vol 10 (8) ◽  
pp. 1602
Author(s):  
Khansa Luqyana Hapsari ◽  
Firyal Tharifa ◽  
Setyo Sarwanto Moersidik ◽  
Sandyanto Adityosulindro ◽  
Cindy Rianti Priadi

2004 ◽  
Vol 49 (10) ◽  
pp. 147-154 ◽  
Author(s):  
J.-Y. Wang ◽  
O. Stabnikova ◽  
S.T.-L. Tay ◽  
V. Ivanov ◽  
J.-H. Tay

Biotechnology for intensive aerobic bioconversion of sewage sludge and food waste into fertilizer was developed. The wastes were treated in a closed reactor under controlled aeration, stirring, pH, and temperature at 60¡C, after addition of starter bacterial culture Bacillus thermoamylovorans. The biodegradation of sewage sludge was studied by decrease of volatile solids (VS), content of organic carbon and autofluorescence of coenzyme F420. The degradation of anaerobic biomass was faster than biodegradation of total organic matter. The best fertilizer was obtained when sewage sludge was thermally pre-treated, mixed with food waste, chalk, and artificial bulking agent. The content of volatile solid and the content of organic carbon decreased at 24.8% and 13.5% of total solids, respectively, during ten days of bioconversion. The fertilizer was a powder with moisture content of 5%. It was stable, and not toxic for the germination of plant seeds. Addition of 1.0 to 1.5% of this fertilizer to the subsoil increased the growth of different plants tested by 113 to 164%. The biotechnology can be applied in larger scale for the recycling of sewage sludge and food wastes in Singapore.


2013 ◽  
Vol 750-752 ◽  
pp. 119-122 ◽  
Author(s):  
Xiao Ya Wang ◽  
Zhi Dong Xia ◽  
Zhe Li

This study was carried out to discuss the influence of curing temperature on the performance of conductive composites filled with nickel-coated graphite (NCG). The electrical conductivity, crosslink density, mechanical properties and tensile fracture morphology have been investigated. The results indicated that curing temperature had great impact on the electrical conductivity and mechanical properties. Voluem resistivity decreased from 43.1 to 0.08 ohm-cm at 125°C-205°C, and the reason was discussed in light of formation and break of the conductive network in the composites. The stability of SR-NCG cured at 165°C-205°C were also better than those cured at other curing temperature. Besides, tensile strength increased from 2.41 to 7.19Mpa at 125°C-225°C, elongation at break have a 56% increase, and Shore A hardness also incresed from 74 to 82.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Ji Su Bae ◽  
Yeo Myung Yoon ◽  
Seon Kyoung Shin ◽  
Dong Jin Lee ◽  
Dong Cheol Seo

Abstract The objective of this study was to determine methane yields (MY) of organic wastes in biogasification facilities according to the mixing ratio of food waste/food waste leachate and sewage sludge. One biogasification facility that treated sewage sludge only was compared with three biogasification facilities treating sewage sludge and food waste. The theoretical MY was derived based on analyses of carbohydrate, fat, and protein to examine the efficiency of the biogasification facility. The average actual MY was 0.424 Sm3CH4/kg volatile solids, which corresponded to 83.7% of theoretical MY. In the case of combined anaerobic digestion (CD) mixing with food waste/food waste leachate, inhibitory factors (volatile fatty acids [VFAs], total nitrogen [TN], and organic matter contents) showed the tendency to have relatively higher values in CD facilities than in the biogasification facility treating sewage sludge only. Mean concentrations of VFAs and TN in the anaerobic digester effluent, and the organic loading rate were 406 mg/L, 3,721 mg/L, and 1.62 kg volatile solids/m3 day, respectively. The influence of anaerobic digester effluent was in charge of 10% within the influent environmental loading rate from the sewage treatment plants associated with the biogasification facilities. Analyses of the microbial community showed that a remarkable change in the structure of methanogens was directly related to different MY in each plant. In particular, Methanoculleus and Methanosaeta increased with an increasing ratio of food waste/food waste leachate to sludge, while Methanococcus and Methanosarcina decreased. In conclusion, CD showed steady operational conditions and high efficiency of MY by injecting food waste/food waste leachate into the anaerobic digester. It met the current criteria for integrated treatment of organic waste in biogasification facilities in South Korea.


2006 ◽  
Vol 53 (3) ◽  
pp. 165-172 ◽  
Author(s):  
K.R. Pagilla ◽  
M. Urgun-Demirtas ◽  
R. Ramani

The USEPA (2001) water quality nutrient criteria will have a significant impact on water pollution control industry due to stringent N and P requirements. This paper presents an update of findings on successful total N (TN) and total P (TP) technologies being implemented at existing wastewater treatment plants (WWTP) to achieve low TN and TP effluents and some key challenges in achieving lower levels. Plants consistently achieving <5 mg TN/L and <0.5 mg TP/L were identified from a worldwide literature search and plant data collection. Technology gaps and research needs to improve successful technologies to achieve very low TN and TP effluents are summarised in this paper. The dissolved and colloidal organic N have been identified as major challenges in achieving very low levels of TN. Technical and economic challenges to achieve very low TP effluents include alkalinity deficiency, high chemical usage, high sludge production and lack of sufficient influent BOD for biological P uptake.


2010 ◽  
Vol 113-116 ◽  
pp. 1080-1083 ◽  
Author(s):  
Ying Ying Liu ◽  
Qun Hui Wang ◽  
Li Wei Chen ◽  
Xiao Qiang Wang ◽  
Juan Wang

In order to reduce the costs of production and increase the lactic acid yields, this research adopts Bacillus subtilis to substitute enzymes. The method used in the study is two-phase fermentation - inoculate Bacillus subtilis to food waste to produce sugar, and then inoculate Lactobacillus to food waste to yield lactic acid. 87.22 g l–1 of total sugar can be obtained from non-autoclaved food waste in 30 h of saccharification at 40 centigrade. After two-phase fermentation, the optimal lactic acid concentration was 50.77g/L. The results indicate that two-phase fermentation is better than synchronous saccharification fermentation.


Sign in / Sign up

Export Citation Format

Share Document