scholarly journals Utilization of yellow velvetleaf and water spinach to reduce copper ion in surface water of the estuary of babon river Semarang

2021 ◽  
Vol 896 (1) ◽  
pp. 012034
Author(s):  
B Syahputra ◽  
Nafiah

Abstract The Babon River in East Semarang has been polluted by heavy metals sourced from industrial waste. So that water pollution at the Babon River estuary does not spread, it is necessary to carry out water treatment. This research uses a glass aquarium reactor and utilizes yellow velvetleaf (limmoncharis Flava) and water spinach (Ipomoea aquatic fork) plants as a medium to reduce the concentration of copper ions (Cu2+) by using variations in detention time. The results and analysis showed that yellow velvetleaf and water spinach could reduce the concentration of copper ions (Cu2+) in estuary surface water within 1 hour, 2 hours, 3 hours, and 5 hours. After going through several stages of a simple drinking water pre-treatment process, the results showed that yellow velvetleaf plants could reduce the concentration of copper ions (Cu2+) in Babon river water samples, from an initial concentration of 0.055 mg/L to 0.020 mg/L, with the highest efficiency percentage reduction up to 61.5%. As for water spinach, the concentration of copper ions that can be reduced only reaches the lowest level of 0.047 mg/L, with the highest percentage reduction efficiency of only 9.6% after the same pre-treatment process.

2015 ◽  
Vol 4 (1) ◽  
pp. 7-10
Author(s):  
Fitri Dewi ◽  
M. Faisal ◽  
Mariana

Laundry waste contains high phosphate concentrations that exceeding levels in Regulation No. 82 of 2001 about Water Quality Management and Control of Water Pollution.  When the waste is directly discharged into the sewers or river without treatment, it can cause water pollution and lead to eutrophication.  Water spinach (Ipomoea aquatica Forsk) and Jeringau (Acorus Calamus l) might be use to absorb phosphate in laundry waste. The aim of this research is to investigate the efficiency of phosphate absorption by using water spinach and Jeringau. The experiments were carried out in a batch system. The results showed that the reduction efficiency of phosphate by Water spinach and Jeringau was 41.61% and 53.75%, respectively.


Author(s):  
E. A. Iyiola ◽  
J. M. Owoyemi ◽  
T. P. Saliu ◽  
B. Olufemi ◽  
D. O. Dania ◽  
...  

Aims: This study investigates the use of sawdust from 3 hardwood species as low-cost adsorbent for the removal of copper from contaminated water. Study Design: The experimental design used for this study was 3 x 2 x 4 factorial experiment; the different sawdust species, two baselines (treated and untreated) and four levels of pH and time as factors were combined and used for the study. Methodology: Test was carried out to investigate the effect of sawdust pre-treatment on their adsorption capacity in the removal of Copper ions from contaminated water at different pH levels; the sawdust samples were sieved through a screen size of 850 μm after which a portion of each species sawdust was subjected to pre-treatment by boiling while the other portions were maintained as control samples (untreated). Results: The results shows that adsorption capacity for both treated and untreated samples were 69.75±13.78%,  68.60±19.48%, 69.34±23.08%, 74.79±17.79%, 74.52±22.30% and 76.90±18.21% for  Alstonia boonei, Erythrophleum suaveolens  and Ficus mucuso  respectively. Conclusion: The contact time and pH showed no significant difference between the treated and untreated samples. Sawdusts from the selected wood species are suitable to be used as adsorbent towards the removal of copper from contaminated water.


1986 ◽  
Vol 18 (9) ◽  
pp. 163-173
Author(s):  
R. Boll ◽  
R. Kayser

The Braunschweig wastewater land treatment system as the largest in Western Germany serves a population of about 270.000 and has an annual flow of around 22 Mio m3. The whole treatment process consists of three main components : a pre-treatment plant as an activated sludge process, a sprinkler irrigation area of 3.000 ha of farmland and an old sewage farm of 200 ha with surface flooding. This paper briefly summarizes the experiences with management and operation of the system, the treatment results with reference to environmental impact, development of agriculture and some financial aspects.


2018 ◽  
Vol 2018 (4) ◽  
pp. 103-117
Author(s):  
Bipin Pathak ◽  
Ahmed Al-Omari ◽  
Scott Smith ◽  
Nicholas Passarelli ◽  
Ryu Suzuki ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 787
Author(s):  
Anna Lymperatou ◽  
Niels B. Rasmussen ◽  
Hariklia N. Gavala ◽  
Ioannis V. Skiadas

Swine manure mono-digestion results in relatively low methane productivity due to the low degradation rate of its solid fraction (manure fibers), and due to the high ammonia and water content. The aqueous ammonia soaking (AAS) pretreatment of manure fibers has been proposed for overcoming these limitations. In this study, continuous anaerobic digestion (AD) of manure mixed with optimally AAS-treated manure fibers was compared to the AD of manure mixed with untreated manure fibers. Due to lab-scale pumping restrictions, the ratio of AAS-optimally treated manure fibers to manure was only 1/3 on a total solids (TS) basis. However, the biogas productivity and methane yield were improved by 17% and 38%, respectively, also confirming the predictions from a simplified 1st order hydrolysis model based on batch experiments. Furthermore, an improved reduction efficiency of major organic components was observed for the digester processing AAS-treated manure fibers compared to the non-treated one (e.g., 42% increased reduction for cellulose fraction). A preliminary techno-economic analysis of the proposed process showed that mixing raw manure with AAS manure fibers in large-scale digesters could result in a 72% increase of revenue compared to the AD of manure mixed with untreated fibers and 135% increase compared to that of solely manure.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anita Ejiro Nwaefuna ◽  
Karl Rumbold ◽  
Teun Boekhout ◽  
Nerve Zhou

AbstractBioethanol from abundant and inexpensive agricultural and industrial wastes possesses the potential to reduce greenhouse gas emissions. Bioethanol as renewable fuel addresses elevated production costs, as well as food security concerns. Although technical advancements in simultaneous saccharification and fermentation have reduced the cost of production, one major drawback of this technology is that the pre-treatment process creates environmental stressors inhibitory to fermentative yeasts subsequently reducing bioethanol productivity. Robust fermentative yeasts with extreme stress tolerance remain limited. This review presents the potential of dung beetles from pristine and unexplored environments as an attractive source of extremophilic bioethanolic yeasts. Dung beetles survive on a recalcitrant lignocellulose-rich diet suggesting the presence of symbiotic yeasts with a cellulolytic potential. Dung beetles inhabiting extreme stress environments have the potential to harbour yeasts with the ability to withstand inhibitory environmental stresses typically associated with bioethanol production. The review further discusses established methods used to isolate bioethanolic yeasts, from dung beetles.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1099
Author(s):  
Sheng-Chun Hung ◽  
Chih-Cheng Lu ◽  
Yu-Ting Wu

The optical characteristics of copper ion detection, such as the photometric absorbance of specific wavelengths, exhibit significant intensity change upon incident light into the aqueous solutions with different concentrations of metal ions due to the electron transition in the orbit. In this study, we developed a low-cost, small-size and fast-response photoelectric sensing prototype as an optic sensor for copper (Cu) ions detection by utilizing the principle of optical absorption. We quantified the change of optical absorbance from infra-red (IR) light emitting diodes (LEDs) upon different concentrations of copper ions and the transmitted optical signals were transferred to the corresponding output voltage through a phototransistor and circuit integrated in the photoelectric sensing system. The optic sensor for copper (Cu) ions demonstrated not only excellent specificity with other metal ions such as cadmium (Cd), nickel (Ni), iron (Fe) and chloride (Cl) ions in the same aqueous solution but also satisfactory linearity and reproducibility. The sensitivity of the preliminary sensing system for copper ions was 29 mV/ppm from 0 to 1000 ppm. In addition, significant ion-selective characteristics and anti-interference capability were also observed in the experiments by the proposed approach.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ananda Tiwari ◽  
Anna-Maria Hokajärvi ◽  
Jorge Santo Domingo ◽  
Michael Elk ◽  
Balamuralikrishna Jayaprakash ◽  
...  

Abstract Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <  0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. Conclusions The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.


Sign in / Sign up

Export Citation Format

Share Document