scholarly journals Gas Turbines for the Chemical Industry

Author(s):  
Z. Stanley Stys

Application of the gas turbine in nitric-acid plants appears attractive. Several of these units have been installed recently in this country and performance and operating experience already have been gained. Design, construction, and layout of “package” units for this particular process are described.

Author(s):  
Klaus Brun ◽  
Luis Eduardo Gonzalez ◽  
John P. Platt

The usage of an industrial inlet fogging and overspraying system on BP Colombia’s fleet of GE 5002 gas turbines was intended to provide additional shaft power output and improved efficiency. However, operating experience has shown less than anticipated power increase and almost no efficiency change, while the gas turbines have experienced more rapid degradation. Consequently, a detailed study was undertaken to identify the principal degradation mechanisms and quantify their relative influence on the gas turbine’s performance and life reduction. This study included a field assessment; review and analysis of the installation and operating data from the historical trend monitoring system; inspection of a rotor for fouling, corrosion, and pitting; materials analysis of the fouling deposits, rotor surface pitting, and inlet filter media; review of the function and effects of inlet fogging and overspray; assessment of the effectiveness of the current on-line/off-line compressor washing program and its compatibility with the overspraying operation; and an analysis of the overall gas turbine efficiency to determine levels of performance degradation. Results from this study identified the principal gas turbine degradation mechanisms, such as blade erosion, corrosion, fouling tip clearance widening, their causes and their relative influence on the overall performance. For example, the study showed that the total power and efficiency degradation of the units exceeded 10% at the time of the rotor overhaul which is well above what is expected for this type of gas turbine. About 70% of this degradation was due to blade erosion and rotor clearance widening. These were attributed to the water overspray operation of the gas turbines. Surface fouling and pitting also contributed about 20% to the total performance degradation. For the given site conditions, the fogging and overspray system provided a gas turbine performance boost of approximately 2–5% in power and less than 0.5% in efficiency. Of this performance gain, saturation fogging accounted for about 85%, while overspray only provided 15%. The principal findings of this study showed that, while the fogging worked, the performance degradation due to water overspray negated most performance gains after only about 24,000 hours of operation. More detailed findings are included in the paper.


Author(s):  
Z. Stanley Stys

Applications of the gas turbine in the steel industry appear attractive. Several of these units have been in operation for many years and performance and considerable operating experience already have been gained. A new type of unit has been developed based on these experiences considering newest advances in the art of engineering of a gas turbine. The historic development and layout as well as the various governing aspects of these units burning blast-furnace gas and built for use in the steel industry are described.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


Author(s):  
Ari Suomilammi

Gasum is an importer of natural gas and is operating and maintaining the Finnish transmission pipeline in which the pressure is maintained with three compressor stations. Gasum’s compressor stations are unmanned and remotely controlled from the central control room. Some of the compressor units are equipped with dry gas seals. The otherwise satisfactory operation of dry gas seals has the disadvantage of methane emissions. Reduction of methane emissions has been stated as a target by international auspices of the Kyoto Protocol or through national programs seeking to reduce emissions. The application described in this paper to collect vent gases from the dry gas seals was installed into four of the compressor units during 2001. The compressors are centrifugal compressors: two of them are Nuovo Pignone PCL603 with PGT10DLE (10 MW) gas turbine and two are Demag DeLaval 2B-18/18 with Siemens Tornado gas turbines (6,5 MW). It is normal for dry gas seals to have a small leakage of gas through the seals due to the function principle and required cooling of the seals. This gas emitted from the seals is normally about of 5...10nm3/h per one compressor unit during operation and during the stand-still the leakage is almost zero. In the year 2000 the total amount of emitted gas in Gasum’s units was about 50.000 nm3 per four compressor units. The target was to find an efficient method to collect the dry gas seal vent gas and utilize it. The solution must be simple and its investment costs must be feasible. Injection of the vent gases to the gas turbine inlet air flow was selected as a solution among some alternatives. The operating experience so far has been several thousands of operating hours without any malfunctions. The amount of collected gas by this system has been in the range of 80.000 nm3 per annum. The total cost of the system for four compressor units was about 85.000€. The intention of this paper is not to describe any scientific approach to the issue but to present a practical solution with operating experience.


Author(s):  
Chippa Anil ◽  
Aparna Satheesh ◽  
Babu Santhanagopalakrishnan ◽  
Marcin Bielecki

Abstract Heavy duty gas turbines are usually equipped with hydrodynamic bearings which are either lemon-bore or tilting pad type. Baker Hughes legacy gas turbines use these two types of bearings, and its selection is based on 1) considering pros & cons from Rotor dynamics, 2) bearing performance, 3) bearing housing stiffness, 4) vibration detection & control. Non-contact probes are used to monitor the vibrations of rotor. Majority of legacy gas turbines are not equipped with these probes. Due to this fact, over the years it resulted in non-detection of dynamics & vibration issue, which caused frequent bearing replacement. As the increase in industry demand to apply and measure vibrations using non-contact probes on bearings, an effort was made by Baker Hughes to implement these on existing fleet units. Also, in order to increase rotor dynamics stability of low-pressure rotor, to improve bearing life and performance, effort was made to replace lemon-bore bearings with tilting pad. This paper demonstrates efforts made to design the titling pad which would fit within envelop of already available bearing housing. Bearing/shaft clearance, bearing performance, modification of bearing retainer clearances are the mandatory tasks which would be dealt in this study. The swap of bearing type, and its effect on whole gas turbine rotor dynamic stability, checking the frequency crossovers with Campbell diagram would also be dealt in this paper. This paper also focuses on assessment on oil passage routing, temperature & proximity probe instrumentation routing design. Re-design is performed by analyzing various configuration, assessing different sensitivity studies & validation of modified bearing housing from structural integrity, ultimate load capability, & split plane oil leakage retention and its comparison with baseline are most important aspects of finalization of this change, which will be showcased in this paper. Instrumentation routing was a critical task when the considering bearing replacement from lemon-bore to tilting pad. As lemon-bore type bearings just have an elliptical inner surface, it’s quite easy to install the thermocouples into a simple hole. But as replacement has tilting pads, the challenge is to instrument the pads without effecting their movement and functionality. Such best practices are also dealt in this paper. Comparison of tilting-pad with lemon-bore, considering the fixed shaft diameter, the retainer outer diameter of tilting pad is higher than lemon-bore. This effect has a change in bearing seat on bearing housing, thereby reducing the effective stiffness of the housing, and the reduced split plane surface. To tackle this situation, several sensitivities were executed, by re-modifying the bolts and bolt holes on the existing housing, without modifying the housing envelop.


Author(s):  
R. Friso ◽  
N. Casari ◽  
M. Pinelli ◽  
A. Suman ◽  
F. Montomoli

Abstract Gas turbines (GT) are often forced to operate in harsh environmental conditions. Therefore, the presence of particles in their flow-path is expected. With this regard, deposition is a problem that severely affects gas turbine operation. Components’ lifetime and performance can dramatically vary as a consequence of this phenomenon. Unfortunately, the operating conditions of the machine can vary in a wide range, and they cannot be treated as deterministic. Their stochastic variations greatly affect the forecasting of life and performance of the components. In this work, the main parameters considered affected by the uncertainty are the circumferential hot core location and the turbulence level at the inlet of the domain. A stochastic analysis is used to predict the degradation of a high-pressure-turbine (HPT) nozzle due to particulate ingestion. The GT’s component analyzed as a reference is the HPT nozzle of the Energy-Efficient Engine (E3). The uncertainty quantification technique used is the probabilistic collocation method (PCM). This work shows the impact of the operating conditions uncertainties on the performance and lifetime reduction due to deposition. Sobol indices are used to identify the most important parameter and its contribution to life. The present analysis enables to build confidence intervals on the deposit profile and on the residual creep-life of the vane.


1976 ◽  
Author(s):  
F. Porchet

A few years ago, Sulzer introduced two new gas turbines to the market, namely the 9-MW single-shaft type 7 and split-shaft type S 7 machines. Twenty-six units have been delivered to date, and over 100,000 field operating hours accumulated. The positive experience with this machine has allowed an uprating to 10 MW. Changes in the structure of the market, particularly the importance of platform installations, have caused Sulzer to redesign the machine’s auxiliaries, which have been, to a great extent, integrated into the gas turbine package. Flexibility in the application of the machine, easy maintainability, and ruggedness were maintained by reducing the required space to less than half the ground area. The main purpose of this paper is to describe the improved turbine of today. The prototype is briefly described and operating experience is listed. The main part of the paper is devoted to a comprehensive description of the redesigned gas turbine package and its new auxiliary system.


Author(s):  
Julie McGraw ◽  
Reiner Anton ◽  
Christian Ba¨hr ◽  
Mary Chiozza

In order to promote high efficiency combined with high power output, reliability, and availability, Siemens advanced gas turbines are equipped with state-of-the-art turbine blades and hot gas path parts. These parts embody the latest developments in base materials (single crystal and directionally solidified), as well as complex cooling arrangements (round and shaped holes) and coating systems. A modern gas turbine blade (or other hot gas path part) is a duplex component consisting of base material and coating system. Planned recoating and repair intervals are established as part of the blade design. Advanced repair technologies are essential to allow cost-effective refurbishing while maintaining high reliability. This paper gives an overview of the operating experience and key technologies used to repair these parts.


Author(s):  
Matthias Hiddeman ◽  
Peter Marx

The GT26 gas turbine provides an additional degree of flexibility as the engine operates at high efficiencies from part load to full load while still maintaining low NOx emissions. The sequential combustion, with the EV burner as the basis for this flexibility also extends to the ability to handle wide fluctuations in fuel gas compositions. Increased mass flow was the main driver for the latest GT26 upgrade, resulting in substantial performance improvements. In order to ensure high levels of reliability and availability Alstom followed their philosophy of evolutionary steps to continuously develop their gas turbines. A total of 47 engines of this upgrade of the GT26 gas turbine have been ordered worldwide to date (Status: January 2010) enhancing the business case of power generators by delivering superior operational and fuel flexibility and combined cycle efficiencies up to and beyond 59%.


Author(s):  
Cyrus Meher-Homji ◽  
Dave Messersmith ◽  
Tim Hattenbach ◽  
Jim Rockwell ◽  
Hans Weyermann ◽  
...  

LNG market pressures for thermally efficient and environmentally friendly LNG plants coupled with the need for high plant availability have resulted in the world’s first application of high performance aeroderivative gas turbines for a 3.7 MTPA LNG plant in Darwin. The six engines utilized are GE PGT25+ engines rated at 32 MW ISO driving propane, ethylene and methane compressors. The paper describes the design, manufacture, testing, and implementation of these units focusing on both the gas turbine and the centrifugal compressors. Power augmentation utilized on these units is also discussed. An overview of operating experience and lessons learned are provided. Part 1 of this paper provides a detailed analysis of why high thermal efficiency is important for LNG plants from an economic and greenhouse gas perspective.


Sign in / Sign up

Export Citation Format

Share Document