scholarly journals Evaluation of Oil Palm Empty Fruit Bunch for Cellulose Production

2021 ◽  
Vol 945 (1) ◽  
pp. 012021
Author(s):  
Yi Hang Wong ◽  
Eamon Marcus T-Z Chew ◽  
Pey Yi Toh ◽  
Lee Muei Chng

Abstract Oil palm empty fruit bunch (OPEFB) with a cellulose content of 39 wt% is a good promise to be an alternative lignocellulosic feedstock for cellulose production through environmentally friendly extraction process. Therefore, this research was aimed to establish an effective cellulose extraction scheme from OPEFB via introduction of ultrasonication in the alkaline pulping stage for process intensification. The process could greatly reduce alkali solvent usage for cellulose extraction, hence alleviating the environmental impact caused by chemical disposal. Firstly, four distinct pre-treatment techniques had been used to pre-treat the OPEFB powder, namely autoclave, organosolv, acid and microwave pre-treatments. Afterwards, the pre-treated samples further underwent ultrasonic-assisted alkali extraction to extract the cellulose content. It was observed that the autoclave pre-treated ultrasonic extract achieved the highest cellulose content of 77.14 wt% at optimum KOH concentration of 0.75 M, ultrasonic amplitude of 30%, duration of 30 min and temperature of 80 °C. Therefore, the introduction of ultrasonication in alkali extraction of cellulose was indeed an effective approach in establishing a green production scheme of cellulose from lignocellulose.

BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 291-307
Author(s):  
Mahdi Shahriarinour ◽  
Mohd Noor Abdul Wahab ◽  
Shuhaimi Mustafa ◽  
Rosfarizan Mohamad ◽  
Arbakariya B. Ariff

The possibility of using treated oil palm empty fruit bunch (OPEFB) fibres as substrate for cellulase production by Aspergillus terreus was studied using shaking flask fermentation. The effect of different chemical pretreatments, i.e. formic acid, acetic acid, propylamine, phosphoric acid, and n-butylamine, on the suitability of OPEFB fibres as fermentation substrate was investigated. The findings revealed that pretreatment with these chemicals significantly (P<0.05) increased the cellulose and reduced the lignin contents prior to enzymatic hydrolysis. However, fermentation using OPEFB fibres pretreated with phosphoric acid gave the highest cellulase production, which was related to high cellulose content. Further improvement in cellulase production was obtained when the chemically pretreated OPEFB fibres were subsequently treated hydrothermally (autoclaved at 160oC for 10 min) and then biologically (using effective microorganisms). The final activity of the three main components of cellulase (FPase, CMCase, and β-glucosidase) obtained in fermentation by A. terreus using optimally treated OPEFB fibres was (0.77 U mL−1, 8.5 U mL-1, and 6.1 U mL-1), respectively. The production of all these three major components of cellulase using pretreated OPEFB fibres (i.e. chemical, hydrothermal, and biological) were about three times higher than those obtained from fermentation using untreated OPEFB fibres.


Author(s):  
M D Muhd Ali ◽  
P Tamunaidu ◽  
A K H Nor Aslan ◽  
N A Morad ◽  
N Sugiura ◽  
...  

BioResources ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. 6373-6385 ◽  
Author(s):  
Yern Chee Ching ◽  
Tuck Sean Ng

The effects of chlorite bleaching on the properties of cellulose derived from oil palm empty fruit bunch (OPEFB) fiber were investigated in this work. Cellulose was extracted from oil palm empty fruit bunch fiber via chlorite bleaching, alkali treatment, and acid hydrolysis. Cellulose was extracted by varying the bleaching duration, which corresponded to 4, 8, or 12 h. Fourier transform infrared (FTIR) analysis showed that the lignin and hemicellulose were significant removed after the bleaching process, whereas no spectral differences were observed in the samples with the increase of bleaching durations. The main removal of the lignin and hemicellulose components had occurred during the bleaching process. There was only slight additional removal of lignin and hemicellulose during the further extraction process with alkali and acid hydrolysis. The peaks at 1740 cm-1 and 1246 cm-1 which represent hemicellulose and lignin, respectively, were not present in the final extracted cellulose. The cellulose yield contents did not increase with the increasing of bleaching duration from 4 h to 12 h. X-ray diffraction (XRD) analysis revealed that the crystallinity and the 200 peak of OPEFB had increased after the bleaching process. Analysis of the visible light transmittance of cellulose, after a bleaching duration of 12 h, demonstrated the highest transmittance due to the disintegration of the fibers. By increasing the bleaching duration, the temperature at 50% weight loss of OPEFB increased, suggesting that the thermal stability of cellulose had improved.


2017 ◽  
Vol 264 ◽  
pp. 9-12 ◽  
Author(s):  
Pei Gie Gan ◽  
Sung Ting Sam ◽  
Muhammad Faiq bin Abdullah ◽  
Nik Noriman bin Zulkepli ◽  
Yin Fong Yeong

In recent years, there has been a great interest in the production of nanocrystalline cellulose (NCC) due to its excellent properties. In this study, empty fruit bunch (EFB) was used as the material for the production of NCC due to its high cellulose content, inexpensive and readily-available source. NCC was prepared using acid hydrolysis at 62% for 1 hours. The morphology of NCC was determined by Field Emission Scanning Electron Microscopy (FESEM). The size of NCC was less than 50 nm in width. The obtained NCC was also characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR spectra analysis showed that hemicellulose and lignin were mostly removed from the EFB after bleaching and alkaline pre-treatment. XRD diffractograms revealed that EFB nanocellulose showed a crystallinity improvement of 24.3% compared to raw EFB cellulose.


2018 ◽  
Vol 8 (02) ◽  
pp. 51 ◽  
Author(s):  
Isroi Isroi ◽  
Adi Cifriadi

There are growing interest to use cellulose as renewable material in order to replace non-renewable polymeric materials. Alteration and chemical modifications of the cellulose by oxidation is needed to improve its properties and functionality. The aim of this study was to evaluate oxidation effect of the cellulose from oil palm empty fruit bunch (OPEFB) using hydrogen peroxide in alkaline condition. Cellulose has been isolated and purified by sodium hydroxide method followed by sodium hypochlorite bleaching. The oxidation effect of the cellulose by hydrogen peroxide was investigated by component analysis of the lignocelluloses, visual analysis, physical and chemical properties. Fourier transform infrared spectroscopy was employed to evaluate the changes of functional groups. Digesting of the OPEFB by sodium hydroxide at temperature 160oC for 4 hours reduced lignin content from 22.58% to 16.60%, increase cellulose and hemicelluloses content from 60.76% to 73.87% and 25.86% to 30.95%, respectively. Treatment of the OPEFB pulp using sodium hypochlorite removed all residual lignin. Cellulose content was increased up to 90.86%. Degree of polymerization of the oxidized cellulose was reduced from 1997 to 658. Carboxyl groups of celluloses was significantly increased and confirmed by titration analysis. OPEFB cellulose fiber was damage and broken, meanwhile crystallinity of the cellulose was reduced.Keywords: cellulose, oxidation, oil palm empty fruit bunch, carboxyl group, crystallinity, physical properties Oksidasi Selulosa dari Tandan Kosong Kelapa Sawit menggunakan Hidrogen Peroksida dalam Kondisi BasaAbstrakPerhatian untuk memanfaatkan selulosa sebagai polimer terbarukan untuk menggantikan polimer tidak terbarukan mengalami peningkatan. Perubahan dan modifikasi kimia selulosa melalui proses oksidasi diperlukan untuk meningkatkan sifat dan fungsi selulosa. Penelitian ini bertujuan untuk mempelajari pengaruh oksidasi selulosa dari tandan kosong kelapa sawit (TKKS) menggunakan hidrogen peroksida dalam suasana basa. Selulosa diisolasi dan dimurnikan dengan metode natrium hidroksida dan dilanjutkan dengan pemutihan natrium hipoklorit. Efek oksidasi selulosa oleh hidrogen peroksida dievaluasi menggunakan analisis komponen lignoselulosa, analisis visual, sifat fisik dan kimia. Analisis spektroskopi inframerah (FTIR) digunakan untuk mengevaluasi perubahan gugus fungsional selulosa. Pemasakan TKKS dengan natrium hidroksida pada suhu160oC selama 4 jam mengurangi kandungan lignin dari 22,58% menjadi 16,60%, meningkatkan kandungan selulosa dari 60,76% menjadi 73,87% dan hemiselulosa dari 25,86% menjadi 30,95%. Perlakuan pulp TKKS menggunakan natrium hipoklorit menghilangkan semua sisa lignin. Kandungan selulosa meningkat hingga 90,86%. Oksidasi selulosa dengan hidrogen peroksida menurunkan derajat polimerisasi selulosa dari 1997 menjadi 658. Gugus karboksil selulosa meningkat secara signifikan dan dikonfirmasi dengan analisis titrasi. Analisis visual menunjukkan kerusakan serabut selulosa, sesuai dengan pengurangan kristalinitas selulosa.Kata kunci: selulosa, oksidasi, tandan kosong kelapa sawit, gugus karboksil, kristalinitas, sifat fisik 


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0258065
Author(s):  
F. M. Y. Nur-Nazratul ◽  
M. R. M. Rakib ◽  
M. Z. Zailan ◽  
H. Yaakub

The changes in lignocellulosic biomass composition and in vitro rumen digestibility of oil palm empty fruit bunch (OPEFB) after pre-treatment with the fungus Ganoderma lucidum were evaluated. The results demonstrated that the pre-treatment for 2–12 weeks has gradually degraded the OPEFB in a time-dependent manner; whereby lignin, cellulose, and hemicellulose were respectively degraded by 41.0, 20.5, and 26.7% at the end of the incubation period. The findings were corroborated using the physical examination of the OPEFB by scanning electron microscopy. Moreover, the OPEFB pre-treated for 12 weeks has shown the highest in vitro digestibility of dry (77.20%) and organic (69.78%) matter, where they were enhanced by 104.07 and 96.29%, respectively, as compared to the untreated control. The enhancement in the in vitro ruminal digestibility was negatively correlated with the lignin content in the OPEFB. Therefore, biologically delignified OPEFB with G. lucidum fungal culture pre-treatment have the potential to be utilized as one of the ingredients for the development of a novel ruminant forage.


2010 ◽  
Vol 101 (24) ◽  
pp. 9792-9796 ◽  
Author(s):  
Robiah Yunus ◽  
Shanti Faridah Salleh ◽  
Nurhafizah Abdullah ◽  
Dyg Radiah Awg Biak

Sign in / Sign up

Export Citation Format

Share Document