scholarly journals Focused Ion Beam Methods for Research and Control of HEMT Fabrication

Author(s):  
E Ph Pevtsov ◽  
A V Bespalov ◽  
T A Demenkova ◽  
P A Luchnikov
1993 ◽  
Vol 33 (1-2) ◽  
pp. 158-164 ◽  
Author(s):  
C.H. Chu ◽  
Y.L. Wang ◽  
Y.F. Hsieh ◽  
L.R. Harriott ◽  
H.H. Wade ◽  
...  

Author(s):  
Jack Zhou ◽  
Guoliang Yang

There are three major steps toward the fabrication of a single-digit nanohole: (1) preparing the free-standing thin film by epitaxial deposition and electrochemical etching, (2) making submicron holes (0.2–0.02 μm) by focused ion beam (FIB), and (3) reducing the hole to less than 10 nm by FIB-induced deposition. One specific aim for this paper is to model, simulate, and control the focused ion-beam machining process to fabricate holes that can reach a single-digit nanometer scale on solid-state thin films. Preliminary work has been done on the thin film (30 nm in thickness) preparation, submicron hole fabrication, and ion-beam-induced deposition, and the results are presented.


2006 ◽  
Vol 12 (S02) ◽  
pp. 1280-1281
Author(s):  
DP Adams ◽  
MB Sinclair ◽  
TM Mayer ◽  
MJ Vasile ◽  
WC Sweatt

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


2017 ◽  
Vol 114 (24) ◽  
pp. E4859-E4867 ◽  
Author(s):  
Yumei Wu ◽  
Christina Whiteus ◽  
C. Shan Xu ◽  
Kenneth J. Hayworth ◽  
Richard J. Weinberg ◽  
...  

Close appositions between the membrane of the endoplasmic reticulum (ER) and other intracellular membranes have important functions in cell physiology. These include lipid homeostasis, regulation of Ca2+ dynamics, and control of organelle biogenesis and dynamics. Although these membrane contacts have previously been observed in neurons, their distribution and abundance have not been systematically analyzed. Here, we have used focused ion beam-scanning electron microscopy to generate 3D reconstructions of intracellular organelles and their membrane appositions involving the ER (distance ≤30 nm) in different neuronal compartments. ER–plasma membrane (PM) contacts were particularly abundant in cell bodies, with large, flat ER cisternae apposed to the PM, sometimes with a notably narrow lumen (thin ER). Smaller ER–PM contacts occurred throughout dendrites, axons, and in axon terminals. ER contacts with mitochondria were abundant in all compartments, with the ER often forming a network that embraced mitochondria. Small focal contacts were also observed with tubulovesicular structures, likely to be endosomes, and with sparse multivesicular bodies and lysosomes found in our reconstructions. Our study provides an anatomical reference for interpreting information about interorganelle communication in neurons emerging from functional and biochemical studies.


2014 ◽  
Vol 1712 ◽  
Author(s):  
Prabhu Balasubramanian ◽  
Jeremy F. Graham ◽  
Robert Hull

ABSTRACTThe focused ion beam (FIB) has the necessary precision, spatial resolution and control over ion delivery for potential nano-scale doping of nanostructures such as semiconductor quantum dots (QDs). The ion current density in a FIB is 0.1-10 A/cm2, which is at least three orders of magnitude higher than that in a commercial broad beam ion implanter. Therefore an understanding of FIB implantation damage and recovery is of substantial interest. In this work we employ Raman probes of wavelengths 514 nm and 405 nm for quantifying ion implantation damage—both before and after annealing—in 30 kV Si2+, Ge2+ and Ga+ implants (fluences: 1x1012-5x1015 ions/cm2) into Si(100), for the purpose of understanding the effect of ion species on damage recovery.


2002 ◽  
Vol 733 ◽  
Author(s):  
Brock McCabe ◽  
Steven Nutt ◽  
Brent Viers ◽  
Tim Haddad

AbstractPolyhedral Oligomeric Silsequioxane molecules have been incorporated into a commercial polyurethane formulation to produce nanocomposite polyurethane foam. This tiny POSS silica molecule has been used successfully to enhance the performance of polymer systems using co-polymerization and blend strategies. In our investigation, we chose a high-temperature MDI Polyurethane resin foam currently used in military development projects. For the nanofiller, or “blend”, Cp7T7(OH)3 POSS was chosen. Structural characterization was accomplished by TEM and SEM to determine POSS dispersion and cell morphology, respectively. Thermal behavior was investigated by TGA. Two methods of TEM sample preparation were employed, Focused Ion Beam and Ultramicrotomy (room temperature).


2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


Sign in / Sign up

Export Citation Format

Share Document