scholarly journals Surfactants for improving the safety of oil plant equipment operation

Author(s):  
A S Tyusenkov ◽  
O R Latypov
Author(s):  
Kseniia Sapozhnikova ◽  
Iuliia Baksheeva ◽  
Roald Taymanov

Significant features of using the equipment installed at nuclear, hydraulic and thermal power plants are a multiyear cycle of continuous operation with minimum maintenance works and very high costs necessary to eliminate the consequences of possible crashes. Automatic checking of the state of the most important equipment units can become the optimal decision. In Russia, methods of building intelligent sensors and methods of intellectualization of multichannel measuring systems have been developed. Intellectualization of a measuring system enables to increase the reliability of equipment operation significantly. Examples are given.


Author(s):  
S. R. Rakhmanov

In some cases, the processes of piercing or expanding pipe blanks involve the use of high-frequency active vibrations. However, due to insufficient knowledge, these processes are not widely used in the practice of seamless pipes production. In particular, the problems of increasing the efficiency of the processes of piercing or expanding a pipe blank at a piercing press using high-frequency vibrations are being solved without proper research and, as a rule, by experiments. The elaboration of modern technological processes for the production of seamless pipes using high-frequency vibrations is directly related to the choice of rational modes of metal deformation and the prediction resistance indicators of technological tools and the reliability of equipment operation. The creation of a mathematical model of the process of vibrating piercing (expansion) of an axisymmetric pipe blank at a piercing press of a pipe press facility is an actual task. A calculation scheme for the process of piercing a pipe plank has been elaborated. A dependence was obtained characterizing the speed of front of plastic deformation propagation on the speed of penetration of a vibrated axisymmetric mandrel into the pipe workpiece being pierced. The dynamic characteristics of the occurrence of wave phenomena in the metal being pierced under the influence of a vibrated tool have been determined, which significantly complements the previously known ideas about the stress-strain state of the metal in the deformation zone. The deformation fields in the zones of the disturbed region of the deformation zone were established, taking into account the high-frequency vibrations of the technological tool. It has been established that the choice of rational parameters (amplitude-frequency characteristics) of the vibration piercing process of a pipe blank results in significant increase in the efficiency of the process, the durability of the technological tool and the quality of the pierced blanks.


Author(s):  
N. S. Tsarev ◽  
V. I. Aksenov ◽  
I. I. Nichkova

To neutralize the waste pickling solutions and rinsing water, resulting from cleaning metal products s surface of rust by acids solutions, lime is used. Being cheap, this method of sewage neutralization has considerable drawbacks. Forming in the technological pipes strong gypsum depositions and low specific productivity of the equipment for sediment dewatering are most significant of them. Characteristic of aggressive industrial sewage, formed at pickling of ferrous metals presented. Methods of elimination of drawbacks of industrial sewage neutralization by lime considered, including stabilization of neutralized industrial sewage and control of properties of the sediment formed. It was noted, that stability of the circulating water can be provided by accelerating of crystallization of the forming gypsum sediments by introducing in it fine priming powder and heating the neutralized water up to 65-70 °С followed by thermal softening of a part of circulating water, removed out of the circulating system. It was shown, that the heating of the water and the ongoing changes of the composition and properties of the sediment result in decrease of filtration resistance 2-3 folds, increase of deposition speed 3-4 folds and decrease the sediment volume 1.5-2 folds comparing with lime neutralization in cold water. Calculated dozes of lime at the heating were taken the same as at the regular lime neutralization. Elimination of the circulating water oversaturation by bi-water gypsum can be reached also by addition into the water of powder-like gypsum pulp - priming powder for microcrystals of the gypsum, followed by aeration during 30-40 min. This method was tested under industrial conditions. Technological properties of the forming sediment can be improved by sediment treatment by flocculants and preliminary heating of the neutralized water up to 65-70 °С. Control of technological properties of the sediment is done by addition of flocculants and heating of the neutralized water. Recommendations for improving operation of the neutralization facilities presented with indicating particular technological parameters of the equipment operation for sewage and sediment treatment. 


2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract NICROFER 6023 is a nickel-chromium-iron alloy containing small quantities of aluminum. It has excellent resistance to oxidation at high temperatures, good resistance in oxidizing sulfur-bearing atmospheres and good resistance to carburizing conditions. The alloy has good mechanical properties at room and elevated temperatures. Its applications include heat treating furnace equipment, chemical equipment in various industries, and power plant equipment. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-314. Producer or source: Vereingte Deutsche Metallwerke AG.


Alloy Digest ◽  
1986 ◽  
Vol 35 (2) ◽  

Abstract ALUMINUM 513.0 is an aluminum-magnesium-zinc permanent-mold casting alloy. It cannot be hardened nor strengthened by any thermal treatment and is characterized by moderate strength and ductility. It is recommended for such applications as chemical-plant equipment, food handling and marine hardware. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: Al-265. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1970 ◽  
Vol 19 (4) ◽  

Abstract FIRTH VICKERS FI (A1) is a chromium type heat and corrosion resistant alloy steel recommended for oil refining and chemical plant equipment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-236. Producer or source: Firth-Vickers Stainless Steels Ltd.


Alloy Digest ◽  
1984 ◽  
Vol 33 (8) ◽  

Abstract EASTERN STAINLESS TYPE 310S has high resistance to corrosion and oxidation at high temperatures. It also has high strength at elevated temperatures. Thus it is especially suitable for service at high temperatures. It is very ductile and can be welded readily. Among the many applications for Type 310S, a few typical uses include annealing boxes, chemical plant equipment, fire box sheets, furnace linings, heat exchangers, oil-refining equipment, kiln linings and tube hangers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-450. Producer or source: Eastern Stainless Steel Company.


Author(s):  
Paola Furcas ◽  
Rosanna Pastorelli ◽  
Giulia Salmini ◽  
Massimo Vanzi

Abstract High optical power is considered as the source of failures in passive optical elements. Optical connectors, in particular, have been studied because of the unavoidable exposure of their optical interfaces to environmental issues during insertion and extraction. Cleaning and insertion/extraction procedures are investigated. Evidence for burn-out, depending on the different procedures, calls for new suitable rules for handling during equipment operation and testing.


Sign in / Sign up

Export Citation Format

Share Document