Synthesis of layered vs planar Mo2C: role of Mo diffusion

2D Materials ◽  
2021 ◽  
Author(s):  
Muhammad Arslan Shehzad ◽  
Paul C. Masih Das ◽  
Alexander C. Tyner ◽  
Matthew Cheng ◽  
Yea-Shine Lee ◽  
...  

Abstract Chemical Vapor Deposition (CVD) growth of Metal Carbides is of great interest as this method provides large area growth of MXenes. This growth is mainly done using a melted diffusion-based process; however, different morphologies in growth process is not well understood. In this work, we report deterministic synthesis of layered (non-uniform c-axis growth) and planar (uniform c-axis growth) of Molybdenum Carbide (Mo2C) using a diffusion-mediated growth. Mo-diffusion limited growth mechanism is proposed where the competition between Mo and C adatoms determines the morphology of grown crystals. Difference in thickness of catalyst at the edge and center lead to enhanced Mo diffusion which plays a vital role in determining the structure of Mo2C. The layered structures exhibit an expansion in the lattice confirmed by the presence of strain. Density Functional Theory (DFT) shows consistent presence of strain which is dependent upon Mo diffusion during growth. This work demonstrates the importance of precise control of diffusion through the catalyst in determining the structure of Mo2C and contributes to broader understanding of metal diffusion in growth of MXenes.

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1247
Author(s):  
Adriana Pérez-González ◽  
Mario Prejanò ◽  
Nino Russo ◽  
Tiziana Marino ◽  
Annia Galano

Oxidative conditions are frequently enhanced by the presence of redox metal ions. In this study, the role of capsaicin (8-methyl-N-vanillyl-6-nonenamide, CAP) in copper-induced oxidative stress was investigated using density functional theory simulations. It was found that CAP has the capability to chelate Cu(II), leading to complexes that are harder to reduce than free Cu(II). CAP fully turns off the Cu(II) reduction by Asc−, and slows down the reduction in this cation by O2•−. Therefore, CAP is proposed as an •OH-inactivating ligand by impeding the reduction in metal ions (OIL-1), hindering the production of •OH via Fenton-like reactions, at physiological pH. CAP is also predicted to be an excellent antioxidant as a scavenger of •OH, yielded through Fenton-like reactions (OIL-2). The reactions between CAP-Cu(II) chelates and •OH were estimated to be diffusion-limited. Thus, these chelates are capable of deactivating this dangerous radical immediately after being formed by Fenton-like reactions.


2020 ◽  
Author(s):  
Tulin Okbinoglu ◽  
Pierre Kennepohl

Molecules containing sulfur-nitrogen bonds, like sulfonamides, have long been of interest due to their many uses and chemical properties. Understanding the factors that cause sulfonamide reactivity is important, yet their continues to be controversy regarding the relevance of S-N π bonding in describing these species. In this paper, we use sulfur K-edge x-ray absorption spectroscopy (XAS) in conjunction with density functional theory (DFT) to explore the role of S<sub>3p</sub> contributions to π-bonding in sulfonamides, sulfinamides and sulfenamides. We explore the nature of electron distribution of the sulfur atom and its nearest neighbors and extend the scope to explore the effects on rotational barriers along the sulfur-nitrogen axis. The experimental XAS data together with TD-DFT calculations confirm that sulfonamides, and the other sulfinated amides in this series, have essentially no S-N π bonding involving S<sub>3p</sub> contributions and that electron repulsion and is the dominant force that affect rotational barriers.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1032
Author(s):  
Anirban Naskar ◽  
Rabi Khanal ◽  
Samrat Choudhury

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B–X and X–X bond, the X–X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B–X–B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.


2021 ◽  
Vol 13 (15) ◽  
pp. 8123
Author(s):  
Delei Yang ◽  
Jun Zhu ◽  
Qingbin Cui ◽  
Qinghua He ◽  
Xian Zheng

Megaproject citizenship behavior (MCB) has been confirmed to a play vital role on megaproject performance. Although current research has argued that institution elements have had an impact on MCB diffusion, limited studies have empirically investigated the distinct effectiveness of various institution elements on driving MCB’s widespread diffusion in construction megaprojects. Based on institution theory, this study proposes a theoretical model comprising institutional elements (i.e., normative and mimetic isomorphism), owner’s support, relationship-based trust, and their effect or impact on MCB’s diffusion. Based on 171 industrial questionnaires collected from managers of contractors and designers in megaprojects. Partial least squares structural equation modeling (PLS-SEM) was used to validate the established model. The results indicated that both normative and mimetic isomorphism have positive effects on facilitating MCB diffusion, and owner’s support has shown partial mediation in promoting MCB diffusion through normative isomorphism, as well as full mediation in the promoting of MCB diffusion through mimetic isomorphism. Meanwhile, relationship-based trust exerts a positive moderating effect on the relationship between mimetic isomorphism and MCB. This study extends current literature on driving MCB diffusion from the perspective of institutional theory, contributing by providing four implications for megaprojects managers to “buy in” more extensive MCB.


2021 ◽  
Author(s):  
Mojtaba Alipour ◽  
Parisa Fallahzadeh

Density functional theory formalisms of energy partitioning schemes are utilized to find out what energetic components govern interactions in halogenated complexes.


Sign in / Sign up

Export Citation Format

Share Document