Molecular Characterization ofSalmonella entericaSerotype Enteritidis Isolates from Humans by Antimicrobial Resistance, Virulence Genes, and Pulsed-Field Gel Electrophoresis

2012 ◽  
Vol 9 (3) ◽  
pp. 232-238 ◽  
Author(s):  
Ming Zou ◽  
Shivaramu Keelara ◽  
Siddhartha Thakur
2010 ◽  
Vol 138 (5) ◽  
pp. 764-771 ◽  
Author(s):  
Y. ABBOTT ◽  
F. C. LEONARD ◽  
B. K. MARKEY

SUMMARYThis study involved the phenotypic and molecular characterization of a population of methicillin-resistantStaphylococcus aureusisolates from animals and from veterinary personnel in Ireland. Isolates from 77 animals (dogs,n=44; cats,n=4; horses,n=29) and from 28 veterinary personnel were characterized using their antimicrobial resistance profiles and pulsed-field gel electrophoresis patterns. In addition, a representative number of these isolates (n=52) were further analysed usingspa-typing techniques. The results obtained identified the presence of three distinct clonal complexes, CC5, CC8 and CC22, in both animal and human isolates. Two of these clonal complexes, CC8 and CC22, respectively, have been previously described in animals in Ireland but the presence of the third complex CC5 is a novel finding. The significance of this development, in relation to human and animal healthcare, is discussed.


2019 ◽  
Vol 12 (8) ◽  
pp. 1311-1318 ◽  
Author(s):  
Dusadee Phongaran ◽  
Seri Khang-Air ◽  
Sunpetch Angkititrakul

Aim: This study aimed to determine the prevalence and antimicrobial resistance pattern of Salmonella spp., and the genetic relatedness between isolates from broilers and pigs at slaughterhouses in Thailand. Materials and Methods: Fecal samples (604 broilers and 562 pigs) were collected from slaughterhouses from April to July 2018. Salmonella spp. were isolated and identified according to the ISO 6579:2002. Salmonella-positive isolates were identified using serotyping and challenged with nine antimicrobial agents: Amoxicillin/clavulanate (AMC, 30 μg), ampicillin (AMP, 10 μg), ceftazidime (30 μg), chloramphenicol (30 μg), ciprofloxacin (CIP, 5 μg), nalidixic acid (NAL, 30 μg), norfloxacin (10 μg), trimethoprim/sulfamethoxazole (SXT, 25 μg), and tetracycline (TET, 30 μg). Isolates of the predominant serovar Salmonella Typhimurium were examined for genetic relatedness using pulsed-field gel electrophoresis (PFGE). Results: Salmonella was detected in 18.05% of broiler isolates and 37.54% of pig isolates. The most common serovars were Kentucky, Give, and Typhimurium in broilers and Rissen, Typhimurium, and Weltevreden in pigs. Among broilers, isolates were most commonly resistant to antibiotics, NAL, AMP, TET, AMC, and CIP. Pig isolates most commonly exhibited antimicrobial resistance against AMP, TET, and SXT. Based on PFGE results among 52 S. Typhimurium isolates from broilers and pigs, a high genetic relatedness between broiler and pig isolates (85% similarity) in Cluster A and C from PFGE result was identified. Conclusion: The results revealed high cross-contamination between these two animal species across various provinces in Thailand. Keywords: antimicrobial resistance, broilers, pigs, pulsed-field gel electrophoresis, Salmonella spp.


2013 ◽  
Vol 76 (1) ◽  
pp. 18-25 ◽  
Author(s):  
J. S. VAN KESSEL ◽  
J. SONNIER ◽  
S. ZHAO ◽  
J. S. KARNS

Salmonella isolates were recovered from bulk tank milk as part of the National Animal Health Monitoring System (NAHMS) Dairy 2002 and 2007 surveys. In-line milk filters were also tested in the 2007 survey. The objective of this study was to determine the prevalence of antimicrobial resistance among Salmonella enterica isolates from bulk milk and milk filters in the NAHMS Dairy 2002 and 2007 surveys and to further characterize resistant isolates. Susceptibilities to 15 antibiotics were determined for 176 Salmonella isolates of 26 serotypes using an automated antimicrobial susceptibility system. Resistant isolates were screened by PCR for the presence of the extended-spectrum β-lactamase (blaCMY) gene and class I integrons and further characterized by pulsed-field gel electrophoresis. Thirty isolates (17.0%) representing six S. enterica serotypes exhibited resistance to at least one antimicrobial agent (serotypes Newport [14 of 14 isolates exhibited resistance], Dublin [7 of 7], Typhimurium [3 of 5], Kentucky [4 of 22], Anatum [1 of 13], and Infantis [1 of 2]). Twenty isolates (11.4%), including all 14 Newport, 3 Dublin, 2 Typhimurium, and 1 Infantis isolate, displayed the typical multidrug-resistant, blaCMY-positive (MDR-AmpC) phenotype which included resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline, plus resistance to amoxicillin–clavulanic acid and extended-spectrum cephalosporins. Five of the MDR-AmpC isolates carried class I integrons (2.8%). Two-enzyme (XbaI and BlnI) pulsed-field gel electrophoresis discerned clades within serotypes and, together with the resistance profiles, identified strains that appeared to have persisted temporally and geographically. These results suggest that there is a low but appreciable risk of infection with MDR Salmonella from consumption of nonpasteurized milk and dairy products.


2004 ◽  
Vol 48 (2) ◽  
pp. 666-669 ◽  
Author(s):  
Raquel Barbolla ◽  
Mariana Catalano ◽  
Betina E. Orman ◽  
Angela Famiglietti ◽  
Carlos Vay ◽  
...  

ABSTRACT Twenty-five plasmid-specified antimicrobial resistance determinants common to gram-negative bacilli from nosocomial infection were investigated from 31 Stenotrophomonas maltophilia isolates. Twenty-four clones were identified by pulsed-field gel electrophoresis, and in three clones that exhibited an increased trimethoprim-sulfamethoxazole MIC, the sul1 determinant was found. These results support not only the higher spread of class 1 integrons compared to other mechanisms but also the potential limitation of using trimethoprim-sulfamethoxazole for therapy of severe S. maltophilia infections.


2020 ◽  
Vol 83 (3) ◽  
pp. 485-490 ◽  
Author(s):  
DANILO A. L. SILVA ◽  
CLARISSE V. BOTELHO ◽  
BRUNA T. F. MARTINS ◽  
RAFAELA M. TAVARES ◽  
ANDERSON C. CAMARGO ◽  
...  

ABSTRACT Listeria monocytogenes contamination was assessed in different steps of a pork production chain. Ten lots of pigs were sampled at termination barns, at slaughter (after bleeding, after buckling, after evisceration, and after final washing), at processing (knives, deboning tables, and employees' hands), and of end products (ribs, shoulder, ham, and sausage). All samples (n = 670) were subjected to L. monocytogenes detection, and the obtained isolates (n = 18, identified as Listeria spp.) were characterized by their biochemical characteristics, serogroups, virulence genes, pulsed-field gel electrophoresis profiles, antibiotic resistances (ampicillin, penicillin, gentamicin, and sulfamethoxazole-trimethoprim), and adhesion abilities. The results revealed the low occurrence of Listeria spp. in the evaluated pork production chain. However, four tested sausage samples (40%) were positive for Listeria spp., with L. monocytogenes identified in two (20%) of these samples. Ten isolates were identified as L. monocytogenes (eight from serogroup 1/2a or 3a and two from serogroup 4b, 4d, or 4e): all isolates were also positive for the virulence-related genes hlyA, iap, plcA, actA, inlA, inlB, inlC, and inlJ and susceptible to the tested antibiotics. One sausage sample was contaminated by both serogroups 1/2a or 3a and 4b, 4d, or 4e. Isolates from serogroup 1/2a or 3a obtained during visits 5 and 6 presented distinct genetic profiles by pulsed-field gel electrophoresis, indicating that contamination may come from different sources. The adhesion potential exhibited by Listeria spp. isolates (n = 18) ranged from weak (serogroup 4b, 4d, or 4e) to moderate (L. innocua and L. monocytogenes serogroup 1/2a or 3a). Despite the low occurrence of L. monocytogenes, pathogenic serogroups were detected in sausages, demanding control measures by the industry. HIGHLIGHTS


2004 ◽  
Vol 67 (4) ◽  
pp. 698-705 ◽  
Author(s):  
WONDWOSSEN A. GEBREYES ◽  
PETER R. DAVIES ◽  
PAA-KOBINA TURKSON ◽  
W. E. MORGAN MORROW ◽  
JULIE A. FUNK ◽  
...  

The main objectives of this study were to determine antimicrobial resistance patterns among Salmonella serotypes and to evaluate the role of transport trucks in dissemination of antimicrobial-resistant strains of Salmonella. Salmonella from groups of nursery and finishing pigs on farms, from trucks, and from pigs after slaughter were compared using serotyping, patterns of antimicrobial resistance, and pulsed-field gel electrophoresis patterns. The five farms included in the study yielded 858 isolates representing 27 Salmonella serovars. The most common resistance observed (80% of all isolates) was to tetra-cycline; resistance to ampicillin (42%), chloramphenicol (31%), amoxicillin/clavulanic acid (30%), and piperacillin (31%) also were common. We found a correlation between serovar and antimicrobial resistance. High correlation was found between Salmonella Typhimurium var. Copenhagen and chloramphenicol resistance (Spearman rank correlation, ρ = 0.7). Multidrug resistance was observed primarily in Salmonella Typhimurium var. Copenhagen (94%) and Salmonella Typhimurium (93%) and was much less common in the other common serovars, including Salmonella Derby (7%) and Salmonella Heidelberg (8%). Of the 225 isolates exhibiting the most common pentaresistance pattern in this study, amoxicillin/clavulanic acid–ampicillin–chloramphenicol–piperacillin–tetracycline, 220 (98%) were Salmonella Typhimurium var. Copenhagen, and 86% of the isolates of this serovar had this pattern. Isolates from the trucks were similar, based on pulsed-field gel electrophoresis patterns, to those from the cecum and mesenteric lymph nodes of pigs on two of the farms, suggesting the probable infection of pigs during transport. Class I integrons were also common among various serovars.


Sign in / Sign up

Export Citation Format

Share Document