scholarly journals The membrane-cytoplasm interface of integrin alpha subunits is critical for receptor latency.

1996 ◽  
Vol 7 (10) ◽  
pp. 1499-1509 ◽  
Author(s):  
R Briesewitz ◽  
A Kern ◽  
L B Smilenov ◽  
F S David ◽  
E E Marcantonio

Localization of integrin receptors to focal contact sites occurs upon ligand binding. This activity is latent, since unoccupied integrin receptors do not localize to focal contacts. Deletion analysis has revealed that the alpha cytoplasmic domains is required for the maintenance of integrin receptor latency. Our current hypothesis for the mechanism of integrin post-ligand binding events is that there is a change in relationship of alpha and beta cytoplasmic domains, which overcomes receptor latency. One possible mechanism for such a change would involve the amino acid residues at the membrane-cytoplasm interface. To test this hypothesis, we have produced point mutations in the human integrin alpha 1 subunit. These mutations had no effect on the adhesion via alpha 1 beta 1 to its ligand, collagen IV. However, receptor latency is lost in one of these mutants, leading to constitutive focal contact localization. This effect did not occur in receptors with an exchange of intracellular domains, suggesting that the mechanism of loss of latency involves a relative motion of the integrin chains. These results suggest a model in which post-ligand binding events in integrin receptors are associated with changes in the position of the alpha and beta cytoplasmic domains.

1995 ◽  
Vol 6 (8) ◽  
pp. 997-1010 ◽  
Author(s):  
R Briesewitz ◽  
A Kern ◽  
E E Marcantonio

The membrane proximal regions of integrin alpha and beta subunits are highly conserved in evolution. In particular, all integrin alpha subunits share the KXGFFKR sequence at the beginning of their cytoplasmic domains. Previous work has shown that this domain is important in integrin receptor assembly. Using chimeric integrin alpha and beta subunits, we show that the native cytoplasmic domains of both subunits must be present for efficient assembly. Most strikingly, chimeric alpha 1 and beta 1 subunits with reciprocally swapped intracellular domains dimerize selectively into collagen IV receptors expressed at high levels on the surface. However, these receptors, which bind ligand efficiently, are deficient in a variety of post-ligand binding events, including cytoskeletal association and induction of tyrosine phosphorylation. Furthermore, deletion of the distal alpha cytoplasmic domain in the swapped heterodimers leads to ligand-independent focal contact localization, which also occurs in wild-type subunits when the distal cytoplasmic domain is deleted. These results show that proper integrin assembly requires opposed alpha and beta cytoplasmic domains, and this opposition prevents ligand-independent focal contact localization. Our working hypothesis is that these two domains may associate during receptor assembly and provide the mechanism for integrin receptor latency.


2001 ◽  
Vol 12 (3) ◽  
pp. 675-684 ◽  
Author(s):  
Jules J.E. Doré ◽  
Diying Yao ◽  
Maryanne Edens ◽  
Nandor Garamszegi ◽  
Elizabeth L. Sholl ◽  
...  

Transforming growth factor-βs (TGF-β) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-β type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-β receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.


1998 ◽  
Vol 330 (2) ◽  
pp. 861-869 ◽  
Author(s):  
J. Raj MEHTA ◽  
Beate DIEFENBACH ◽  
Alex BROWN ◽  
Eilish CULLEN ◽  
Alfred JONCZYK ◽  
...  

The molecular mechanisms of αvβ3 integrin affinity regulation have important biological implications in tumour development, wound repair and angiogenesis. We expressed, purified and characterized recombinant forms of human αvβ3 (r-αvβ3) and compared the activation state of these with αvβ3 in its cellular environment. The ligand specificity and selectivity of recombinant full-length and double transmembrane truncations of r-αvβ3 cloned in BacPAK6 vectors and expressed in Sf9 and High Five insect cells were compared with those of native placental αvβ3 and the receptor in situ on the cell surface. r-αvβ3 integrins were purified by affinity chromatography from detergent extracts of cells (full-length), and from the culture medium of cells expressing double-truncated r-αvβ3. r-αvβ3 had the same epitopes, ligand-binding specificities, bivalent cation requirements and susceptibility to RGD-containing peptides as native αvβ3. On M21-L4 melanoma cells, αvβ3 mediated binding to vitronectin, but not to fibrinogen unless activated with Mn2+. Non-activated αIIbβ3 integrin as control in M21-L-IIb cells had the opposite profile, mediating binding to fibrinogen, but not to vitronectin unless activated with Mn2+. Thus these receptors had moderate to low ligand affinity. In marked contrast, purified αvβ3 receptors, with or without transmembrane and cytoplasmic domains, were constitutively of high affinity and able to bind strongly to vitronectin, fibronectin and fibrinogen under physiological conditions. Our data suggest that, in contrast with the positive regulation of αIIbβ3 in situ, intracellular controls lower the affinity of αvβ3, and the cytoplasmic domains may act as a target for negative regulators of αvβ3 activity.


2000 ◽  
Vol 93 (4) ◽  
pp. 1022-1033 ◽  
Author(s):  
Carla Nau ◽  
Sho-Ya Wang ◽  
Gary R. Strichartz ◽  
Ging Kuo Wang

Background S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R(+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and compared the intrinsic affinities to another isoform, the rat skeletal muscle (mu1) Na+ channel. Methods Human heart and mu1 Na+ channel alpha subunits were transiently expressed in HEK293t cells and investigated during whole cell voltage-clamp conditions. Using site-directed mutagenesis, the authors created point mutations at positions hH1-F1760, hH1-N1765, hH1-Y1767, and hH1-N406 by introducing the positively charged lysine (K) or the negatively charged aspartic acid (D) and studied their influence on state-dependent block by bupivacaine enantiomers. Results Inactivated hH1 Na+ channels displayed a weak stereoselectivity with a stereopotency ratio (+/-) of 1.5. In mutations hH1-F1760K and hH1-N1765K, bupivacaine affinity of inactivated channels was reduced by approximately 20- to 40-fold, in mutation hH1-N406K by approximately sevenfold, and in mutations hH1-Y1767K and hH1-Y1767D by approximately twofold to threefold. Changes in recovery of inactivated mutant channels from block paralleled those of inactivated channel affinity. Inactivated hH1 Na+ channels exhibited a slightly higher intrinsic affinity than mu1 Na+ channels. Conclusions Differences in bupivacaine stereoselectivity and intrinsic affinity between hH1 and mu1 Na+ channels are small and most likely of minor clinical relevance. Amino acid residues in positions hH1-F1760, hH1-N1765, and hH1-N406 may contribute to binding of bupivacaine enantiomers in hH1 Na+ channels, whereas the role of hH1-Y1767 remains unclear.


2020 ◽  
Author(s):  
Naoki Onoda ◽  
Yukihiro Hiramatsu ◽  
Shihono Teruya ◽  
Koichiro Suzuki ◽  
Yasuhiko Horiguchi

AbstractBordetella pertussis is the causative agent of pertussis (whooping cough), a contagious respiratory disease that has recently seen a resurgence despite high vaccination coverage, necessitating improvement of current pertussis vaccines. An autotransporter of B. pertussis, virulence-associated gene 8 (Vag8), has been proposed as an additional component to improve pertussis vaccines. Vag8 is known to play a role in evasion of the complement system and activation of the contact system by inactivating the complement regulating factor, C1 inhibitor (C1 Inh), which inhibits serine proteases, such as plasma kallikrein (PK). However, the nature of the molecular interaction between Vag8 and C1 Inh remains to be determined. In the present study, we attempted to determine the minimum region of Vag8 that interacts with C1 Inh by examining the differently–truncated Vag8 derivatives for the ability to bind and inactivate C1 Inh. The region of Vag8 from amino–acid residues 102 to 548 was found to bind C1 Inh and cancel its inhibitory action on the protease activity of PK at the same level as a Vag8 fragment from amino–acid residues 52 to 648 covering the passenger domain, which carries its extracellular function. In contrast, the truncated Vag8 containing amino–acid residues 102 – 479 or 202 – 648 barely interacted with C1 Inh. These results indicated that the two separate regions of amino–acid residues 102 – 202 and 479 – 548 are likely required for the interaction with C1 Inh.ImportancePertussis is currently reemerging worldwide, and is still one of the greatest disease burdens in infants. B. pertussis produces a number of virulence factors, including toxins, adhesins, and autotransporters. One of the autotransporters, Vag8, which binds and inactivates the complement regulator C1 Inh, is considered to contribute to the establishment of B. pertussis infection. However, the nature of the interaction between Vag8 and C1 Inh remains to be explored. In this study, we narrowed down the region of Vag8 that interacts with C1 Inh and demonstrated that at least two separate regions of Vag8 are necessary for the interaction with C1 Inh. Our results provide insight into the structure–function relationship of the Vag8 molecule and information to determine its potential role in the pathogenesis of B. pertussis.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4232 ◽  
Author(s):  
Stolz ◽  
Eppinger ◽  
Sosedov ◽  
Kiziak

The arylacetonitrilase from the bacterium Pseudomonas fluorescens EBC191 has been intensively studied as a model to understand the molecular basis for the substrate-, reaction-, and enantioselectivity of nitrilases. The nitrilase converts various aromatic and aliphatic nitriles to the corresponding acids and varying amounts of the corresponding amides. The enzyme has been analysed by site-specific mutagenesis and more than 50 different variants have been generated and analysed for the conversion of (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile. These comparative analyses demonstrated that single point mutations are sufficient to generate enzyme variants which hydrolyse (R,S)-mandelonitrile to (R)-mandelic acid with an enantiomeric excess (ee) of 91% or to (S)-mandelic acid with an ee-value of 47%. The conversion of (R,S)-2-phenylpropionitrile by different nitrilase variants resulted in the formation of either (S)- or (R)-2-phenylpropionic acid with ee-values up to about 80%. Furthermore, the amounts of amides that are produced from (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile could be changed by single point mutations between 2%–94% and <0.2%–73%, respectively. The present study attempted to collect and compare the results obtained during our previous work, and to obtain additional general information about the relationship of the amide forming capacity of nitrilases and the enantiomeric composition of the products.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1087-1100 ◽  
Author(s):  
Silvia Estevão ◽  
Pieternella E. van der Spek ◽  
Annemarie M. C. van Rossum ◽  
Cornelis Vink

The DNA recombination and repair machineries of Mycoplasma pneumoniae and Mycoplasma genitalium were predicted to consist of a set of ~11 proteins. The function of one of these proteins was inferred from its homology with proteins belonging to the Endo IV enzyme family. The members of this family function in the repair of apyrimidinic/apurinic (AP) sites in DNA. As such activity may be crucial in the mycoplasmal life cycle, we set out to study the Endo IV-like proteins encoded by M. pneumoniae and M. genitalium. Both proteins, termed Nfo Mpn and Nfo Mge , respectively, were assessed for their ability to interact with damaged and undamaged DNA. In the absence of divalent cations, both proteins exhibited specific cleavage of AP sites. Surprisingly, the proteins also recognized and cleaved cholesteryl-bound deoxyribose moieties in DNA, showing that these Nfo proteins may also function in repair of large DNA adducts. In the presence of Mg2+, Nfo Mpn and Nfo Mge also showed 3′→5′ exonucleolytic activity. By introduction of 13 single point mutations at highly conserved positions within Nfo Mpn , two major types of mutants could be distinguished: (i) mutants that showed no, or limited, AP cleavage activity in the presence of EDTA, but displayed significant levels of AP cleavage activity in the presence of Mg2+; these mutants displayed no, or very low, exonucleolytic activity; and (ii) mutants that only demonstrated marginal levels of AP site cleavage activity in the presence of Mg2+ and did not show exonucleolytic activity. Together, these results indicated that the AP endonucleolytic activity of the Nfo Mpn protein can be uncoupled from its 3′→5′ exonucleolytic activity.


1999 ◽  
Vol 274 (52) ◽  
pp. 37030-37034 ◽  
Author(s):  
Annika Armulik ◽  
IngMarie Nilsson ◽  
Gunnar von Heijne ◽  
Staffan Johansson

Sign in / Sign up

Export Citation Format

Share Document