scholarly journals DNA Damage during the Spindle-Assembly Checkpoint Degrades CDC25A, Inhibits Cyclin–CDC2 Complexes, and Reverses Cells to Interphase

2003 ◽  
Vol 14 (10) ◽  
pp. 3989-4002 ◽  
Author(s):  
Jeremy P.H. Chow ◽  
Wai Yi Siu ◽  
Tsz Kan Fung ◽  
Wan Mui Chan ◽  
Anita Lau ◽  
...  

Cell cycle checkpoints that monitor DNA damage and spindle assembly are essential for the maintenance of genetic integrity, and drugs that target these checkpoints are important chemotherapeutic agents. We have examined how cells respond to DNA damage while the spindle-assembly checkpoint is activated. Single cell electrophoresis and phosphorylation of histone H2AX indicated that several chemotherapeutic agents could induce DNA damage during mitotic block. DNA damage during mitotic block triggered CDC2 inactivation, histone H3 dephosphorylation, and chromosome decondensation. Cells did not progress into G1 but seemed to retract to a G2-like state containing 4N DNA content, with stabilized cyclin A and cyclin B1 binding to Thr14/Tyr15-phosphorylated CDC2. The loss of mitotic cells was not due to cell death because there was no discernible effect on caspase-3 activation, DNA fragmentation, or viability. Extensive DNA damage during mitotic block inactivated cyclin B1-CDC2 and prevented G1 entry when the block was removed. The mitotic DNA damage responses were independent of p53 and pRb, but they were dependent on ATM. CDC25A that accumulated during mitosis was rapidly destroyed after DNA damage in an ATM-dependent manner. Ectopic expression of CDC25A or nonphosphorylatable CDC2 effectively inhibited the dephosphorylation of histone H3 after DNA damage. Hence, although spindle disruption and DNA damage provide conflicting signals to regulate CDC2, the negative regulation by the DNA damage checkpoint could overcome the positive regulation by the spindle-assembly checkpoint.

2021 ◽  
Vol 11 ◽  
Author(s):  
Donna M. Edwards ◽  
Dana K. Mitchell ◽  
Zahi Abdul-Sater ◽  
Ka-Kui Chan ◽  
Zejin Sun ◽  
...  

Fanconi anemia (FA) is a disease of genomic instability and cancer. In addition to DNA damage repair, FA pathway proteins are now known to be critical for maintaining faithful chromosome segregation during mitosis. While impaired DNA damage repair has been studied extensively in FA-associated carcinogenesis in vivo, the oncogenic contribution of mitotic abnormalities secondary to FA pathway deficiency remains incompletely understood. To examine the role of mitotic dysregulation in FA pathway deficient malignancies, we genetically exacerbated the baseline mitotic defect in Fancc-/- mice by introducing heterozygosity of the key spindle assembly checkpoint regulator Mad2. Fancc-/-;Mad2+/- mice were viable, but died from acute myeloid leukemia (AML), thus recapitulating the high risk of myeloid malignancies in FA patients better than Fancc-/-mice. We utilized hematopoietic stem cell transplantation to propagate Fancc-/-; Mad2+/- AML in irradiated healthy mice to model FANCC-deficient AMLs arising in the non-FA population. Compared to cells from Fancc-/- mice, those from Fancc-/-;Mad2+/- mice demonstrated an increase in mitotic errors but equivalent DNA cross-linker hypersensitivity, indicating that the cancer phenotype of Fancc-/-;Mad2+/- mice results from error-prone cell division and not exacerbation of the DNA damage repair defect. We found that FANCC enhances targeting of endogenous MAD2 to prometaphase kinetochores, suggesting a mechanism for how FANCC-dependent regulation of the spindle assembly checkpoint prevents chromosome mis-segregation. Whole-exome sequencing revealed similarities between human FA-associated myelodysplastic syndrome (MDS)/AML and the AML that developed in Fancc-/-; Mad2+/- mice. Together, these data illuminate the role of mitotic dysregulation in FA-pathway deficient malignancies in vivo, show how FANCC adjusts the spindle assembly checkpoint rheostat by regulating MAD2 kinetochore targeting in cell cycle-dependent manner, and establish two new mouse models for preclinical studies of AML.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Eutteum Jeong ◽  
Owen A Brady ◽  
José A Martina ◽  
Mehdi Pirooznia ◽  
Ilker Tunc ◽  
...  

The transcription factors TFE3 and TFEB cooperate to regulate autophagy induction and lysosome biogenesis in response to starvation. Here we demonstrate that DNA damage activates TFE3 and TFEB in a p53 and mTORC1 dependent manner. RNA-Seq analysis of TFEB/TFE3 double-knockout cells exposed to etoposide reveals a profound dysregulation of the DNA damage response, including upstream regulators and downstream p53 targets. TFE3 and TFEB contribute to sustain p53-dependent response by stabilizing p53 protein levels. In TFEB/TFE3 DKOs, p53 half-life is significantly decreased due to elevated Mdm2 levels. Transcriptional profiles of genes involved in lysosome membrane permeabilization and cell death pathways are dysregulated in TFEB/TFE3-depleted cells. Consequently, prolonged DNA damage results in impaired LMP and apoptosis induction. Finally, expression of multiple genes implicated in cell cycle control is altered in TFEB/TFE3 DKOs, revealing a previously unrecognized role of TFEB and TFE3 in the regulation of cell cycle checkpoints in response to stress.


2019 ◽  
Vol 219 (2) ◽  
Author(s):  
Cai Liang ◽  
Zhenlei Zhang ◽  
Qinfu Chen ◽  
Haiyan Yan ◽  
Miao Zhang ◽  
...  

Aurora B kinase plays an essential role in chromosome bi-orientation, which is a prerequisite for equal segregation of chromosomes during mitosis. However, it remains largely unclear whether centromere-localized Aurora B is required for faithful chromosome segregation. Here we show that histone H3 Thr-3 phosphorylation (H3pT3) and H2A Thr-120 phosphorylation (H2ApT120) can independently recruit Aurora B. Disrupting H3pT3-mediated localization of Aurora B at the inner centromere impedes the decline in H2ApT120 during metaphase and causes H2ApT120-dependent accumulation of Aurora B at the kinetochore-proximal centromere. Consequently, silencing of the spindle assembly checkpoint (SAC) is delayed, whereas the fidelity of chromosome segregation is negligibly affected. Further eliminating an H2ApT120-dependent pool of Aurora B restores proper timing for SAC silencing but increases chromosome missegregation. Our data indicate that H2ApT120-mediated localization of Aurora B compensates for the loss of an H3pT3-dependent pool of Aurora B to correct improper kinetochore–microtubule attachments. This study provides important insights into how centromeric Aurora B regulates SAC and kinetochore attachment to microtubules to ensure error-free chromosome segregation.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Josie K. Collins ◽  
Simon I. R. Lane ◽  
Julie A. Merriman ◽  
Keith T. Jones

FEBS Letters ◽  
2019 ◽  
Vol 593 (20) ◽  
pp. 2889-2907 ◽  
Author(s):  
Daniel Hayward ◽  
Tatiana Alfonso‐Pérez ◽  
Ulrike Gruneberg

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Evan B. Dewey ◽  
Amalia S. Parra ◽  
Christopher A. Johnston

AbstractEpithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2481-2481 ◽  
Author(s):  
Rosaria De Filippi ◽  
Stefania Crisci ◽  
Michele Cillo ◽  
Sara Mele ◽  
Angela De Monaco ◽  
...  

Abstract Background: The highly unfavorable outcome of patients with recurrent HL, who progress after stem cell transplantation or are ineligible for such procedure make the development of new active agents an impellent medical need in this clinical setting. EDO-S101 is fusion molecule combining the DNA damaging effects of bendamustine (BDM) with the pan-histone deacetylase (HDAC) inhibitor, vorinostat. Given that BDM and HDAC inhibitors are active agents in recurrent HL we investigated the preclinical activity of EDO-S101 in this malignancy. Methods: We assessed the patterns of EDO-S101 cytotoxicity (0.39 to 50 µmol/L) in a panel of HL-derived cell lines (L1236, L428, KMH2, HDLM2, L540) and its regulatory effects on genes involved in DNA-damage/repair response, apoptosis and cell cycle checkpoints. As a further model we exploited an L1236 cell clone (R100) selected for resistance (R) to BDM through continuous exposure to increasing concentrations of the agent. R100 cells display a growth pattern indistinguishable from parental L1236 cells when cultured in the presence of BDM (100 µmol/L). Clonal identity of R100 cells with parental L1236 was confirmed by sequencing of V3-21 (FR2/FR3) and JH3-JH4 Ig DNA regions. Results: EDO-S101 induced a significant time- and dose-dependent inhibition of growth and survival in all HL cell lines. L1236 cells displayed the highest sensitivity to the agent with an IC50, at 48 hrs, of 1.88 µmol/L, as opposed to KMH2, L428, L540 and HDLM2 cells with IC50 of 2.06, 2.53, 2.26 and 16.2 µmol/L, respectively. These values were about 10-fold lower than the IC50 of BDM in the same cell lines. While exposure of L1236 cells to EDO-S101 caused cell accumulation in S-phase, qRT-PCR disclosed that cell death was mainly dependent on triggering of apoptosis, as shown by the early (24 hrs) and sustained (48 hrs) upregulation of NOXA, p21 and p27 genes. Data were confirmed by the significant increase (>150%) of Annexin V-expressing L1236 cells. In contrast, expression levels of PLK1, AKA and cyclin B1 genes remained unchanged or were increased. This excluded induction of the mitotic catastrophe (MC) as a major determinant of cytotoxic activity for EDO-S101 in L1236 cells. Exposure to EDO-S101 induced a strong DNA stress/repair response as shown by the activation of pATR/pATM and increase of the downstream DNA damage checkpoint proteins pCHK1-/-2 and CCNB1, along with the upregulation of the EXO1 gene. Most intriguingly, BDM-resistant L1236 cells (R100) were highly sensitive to EDO-S101, with an IC50 of only 4.56 µmol/L, but less responsive to vorinostat (IC50: 6.17 µmol/L) than parental L1236 cells (IC50: 0.58 µmol/L). Differently from native cells, EDO-S101 induced a late downregulation of transcripts for PLK1 and AKA genes and of cyclin B1 gene and protein in R100 cells, along with the early induction of NOXA and p21, but not p27 genes. In both L1236 and R100 cells, expression of MC-genes was unaffected by exposure to vorinostat. This suggests a more complex mechanism for EDO-S101 in BDM-resistant HL cells involving activation of the both apoptotic and MC pathways. Notably, we documented that EDO-S101 corrected the constitutive ATM/ATR unbalance of R100 cells by triggering the early (24 hrs) upregulation of ATR and a late (48 hrs) downregulation of ATM transcripts and proteins, along with increased levels of EXO1 and MGMT at 24 hrs. Vorinostat induced a similar effect. Finally, while baseline expression levels of HDAC isoforms were comparable among HL cell lines, EDO-S101 caused a significant (>40%) late downregulation of transcripts for all HDAC isoforms (HDAC-1 to -8) in R100 cells but only of HDAC-6 in native L1236. This pattern diverged from results obtained in both L1236, i.e. increase of all HDAC isoform transcripts except HDAC-6, and R100 cells, i.e. upregulation of all isoforms and reduction of HDAC-6, with vorinostat and BDM as single agents. Conclusions: We have described for the first time that EDO-S101 is effective in preclinical models of HL including cells resistant to BDM. The combined functions of in one molecule of a bifunctional alkylator and panHDAC inhibitor confer this agent unique antitumor property different from both of its single drug components. Following a strong DNA damage response, triggering of apoptosis and/or MC may take place in HL cells according to their sensitivity status to BDM. A phase 1/2 study in recurrent HL, including patients pretreated with BDM, is next to be launched. Disclosures Mehrling: 4Mundipharma-EDO GmbH, Basel, Switzerland: Employment. Pinto:Takeda, Celgene, Roche, TEVA: Honoraria; Takeda: Research Funding.


Blood ◽  
2011 ◽  
Vol 117 (8) ◽  
pp. 2441-2450 ◽  
Author(s):  
Krystyna Mazan-Mamczarz ◽  
Patrick R. Hagner ◽  
Yongqing Zhang ◽  
Bojie Dai ◽  
Elin Lehrmann ◽  
...  

Abstract Maintenance of genomic stability depends on the DNA damage response, a biologic barrier in early stages of cancer development. Failure of this response results in genomic instability and high predisposition toward lymphoma, as seen in patients with ataxia-telangiectasia mutated (ATM) dysfunction. ATM activates multiple cell-cycle checkpoints and DNA repair after DNA damage, but its influence on posttranscriptional gene expression has not been examined on a global level. We show that ionizing radiation modulates the dynamic association of the RNA-binding protein HuR with target mRNAs in an ATM-dependent manner, potentially coordinating the genotoxic response as an RNA operon. Pharmacologic ATM inhibition and use of ATM-null cells revealed a critical role for ATM in this process. Numerous mRNAs encoding cancer-related proteins were differentially associated with HuR depending on the functional state of ATM, in turn affecting expression of encoded proteins. The findings presented here reveal a previously unidentified role of ATM in controlling gene expression posttranscriptionally. Dysregulation of this DNA damage response RNA operon is probably relevant to lymphoma development in ataxia-telangiectasia persons. These novel RNA regulatory modules and genetic networks provide critical insight into the function of ATM in oncogenesis.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Petros Marangos ◽  
Michelle Stevense ◽  
Konstantina Niaka ◽  
Michaela Lagoudaki ◽  
Ibtissem Nabti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document