scholarly journals PtdIns-specific MPR Pathway Association of a Novel WD40 Repeat Protein, WIPI49

2004 ◽  
Vol 15 (6) ◽  
pp. 2652-2663 ◽  
Author(s):  
Tim R. Jeffries ◽  
Stephen K. Dove ◽  
Robert H. Michell ◽  
Peter J. Parker

WIPI49 is a member of a previously undescribed family of WD40-repeat proteins that we demonstrate binds 3-phosphorylated phosphoinositides. Immunofluorescent imaging indicates that WIPI49 is localized to both trans-Golgi and endosomal membranes, organelles between which it traffics in a microtubule-dependent manner. Live cell imaging establishes that WIPI49 traffics through the same set of endosomal membranes as that followed by the mannose-6-phosphate receptor (MPR), and consistent with this, WIPI49 is enriched in clathrin-coated vesicles. Ectopic expression of wild-type WIPI49 disrupts the proper functioning of this MPR pathway, whereas expression of a double point mutant (R221,222AWIPI49) unable to bind phosphoinositides does not disrupt this pathway. Finally, suppression of WIPI49 expression through RNAi, demonstrates that its presence is required for normal endosomal organization and distribution of the CI-MPR. We conclude that WIPI49 is a novel regulatory component of the endosomal and MPR pathway and that this role is dependent upon the PI-binding properties of its WD40 domain.

Author(s):  
Luis Bonet-Ponce ◽  
Alexandra Beilina ◽  
Chad D. Williamson ◽  
Eric Lindberg ◽  
Jillian H. Kluss ◽  
...  

ABSTRACTMutations in the leucine rich repeat kinase 2 (LRRK2) gene are a cause of familial and sporadic Parkinson’s disease (PD). Nonetheless, the biological functions of LRRK2 remain incompletely understood. Here, we observed that LRRK2 is recruited to lysosomes that have a ruptured membrane. Using unbiased proteomics, we observed that LRRK2 is able to recruit the motor adaptor protein JIP4 to permeabilized lysosomes in a kinase-dependent manner through the phosphorylation of RAB35 and RAB10. Super-resolution live cell imaging microscopy and FIB-SEM revealed that once at the lysosomal membrane, JIP4 promotes the formation of LAMP1-negative lysosomal tubules that release membranous content from ruptured lysosomes. Released vesicular structures are able to interact with other lysosomes. Thus, we described a new process that uses lysosomal tubulation to release vesicular structures from permeabilized lysosomes. LRRK2 orchestrates this process that we name LYTL (LYsosomal Tubulation/sorting driven by LRRK2) that, given the central role of the lysosome in PD, is likely to be disease relevant.


2005 ◽  
Vol 16 (8) ◽  
pp. 3873-3886 ◽  
Author(s):  
Maarit Hölttä-Vuori ◽  
Fabien Alpy ◽  
Kimmo Tanhuanpää ◽  
Eija Jokitalo ◽  
Aino-Liisa Mutka ◽  
...  

MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.


2004 ◽  
Vol 3 (5) ◽  
pp. 1349-1358 ◽  
Author(s):  
Thomas Winckler ◽  
Negin Iranfar ◽  
Peter Beck ◽  
Ingo Jennes ◽  
Oliver Siol ◽  
...  

ABSTRACT We recently isolated from Dictyostelium discoideum cells a DNA-binding protein, CbfA, that interacts in vitro with a regulatory element in retrotransposon TRE5-A. We have generated a mutant strain that expresses CbfA at <5% of the wild-type level to characterize the consequences for D. discoideum cell physiology. We found that the multicellular development program leading to fruiting body formation is highly compromised in the mutant. The cells cannot aggregate and stay as a monolayer almost indefinitely. The cells respond properly to prestarvation conditions by expressing discoidin in a cell density-dependent manner. A genomewide microarray-assisted expression analysis combined with Northern blot analyses revealed a failure of CbfA-depleted cells to induce the gene encoding aggregation-specific adenylyl cyclase ACA and other genes required for cyclic AMP (cAMP) signal relay, which is necessary for aggregation and subsequent multicellular development. However, the cbfA mutant aggregated efficiently when mixed with as few as 5% wild-type cells. Moreover, pulsing cbfA mutant cells developing in suspension with nanomolar levels of cAMP resulted in induction of acaA and other early developmental genes. Although the response was less efficient and slower than in wild-type cells, it showed that cells depleted of CbfA are able to initiate development if given exogenous cAMP signals. Ectopic expression of the gene encoding the catalytic subunit of protein kinase A restored multicellular development of the mutant. We conclude that sensing of cell density and starvation are independent of CbfA, whereas CbfA is essential for the pattern of gene expression which establishes the genetic network leading to aggregation and multicellular development of D. discoideum.


2015 ◽  
Vol 211 (2) ◽  
pp. 309-322 ◽  
Author(s):  
Lindsay G. Lammers ◽  
Steven M. Markus

Cortically anchored dynein orients the spindle through interactions with astral microtubules. In budding yeast, dynein is offloaded to Num1 receptors from microtubule plus ends. Rather than walking toward minus ends, dynein remains associated with plus ends due in part to its association with Pac1/LIS1, an inhibitor of dynein motility. The mechanism by which dynein is switched from “off” at the plus ends to “on” at the cell cortex remains unknown. Here, we show that overexpression of the coiled-coil domain of Num1 specifically depletes dynein–dynactin–Pac1/LIS1 complexes from microtubule plus ends and reduces dynein-Pac1/LIS1 colocalization. Depletion of dynein from plus ends requires its microtubule-binding domain, suggesting that motility is required. An enhanced Pac1/LIS1 affinity mutant of dynein or overexpression of Pac1/LIS1 rescues dynein plus end depletion. Live-cell imaging reveals minus end–directed dynein–dynactin motility along microtubules upon overexpression of the coiled-coil domain of Num1, an event that is not observed in wild-type cells. Our findings indicate that dynein activity is directly switched “on” by Num1, which induces Pac1/LIS1 removal.


2001 ◽  
Vol 14 (9) ◽  
pp. 1035-1042 ◽  
Author(s):  
Andres Mäe ◽  
Marcos Montesano ◽  
Viia Koiv ◽  
E. Tapio Palva

Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Stephen Weber ◽  
Maria Wagner ◽  
Hubert Hilbi

ABSTRACTThe causative agent of Legionnaires’ disease,Legionella pneumophila, replicates in amoebae and macrophages in a distinct membrane-bound compartment, theLegionella-containing vacuole (LCV). LCV formation is governed by the bacterial Icm/Dot type IV secretion system that translocates ~300 different “effector” proteins into host cells. Some of the translocated effectors anchor to the LCV membrane via phosphoinositide (PI) lipids. Here, we use the soil amoebaDictyostelium discoideum, producing fluorescent PI probes, to analyze the LCV PI dynamics by live-cell imaging. Upon uptake of wild-type or Icm/Dot-deficientL. pneumophila, PtdIns(3,4,5)P3transiently accumulated for an average of 40 s on early phagosomes, which acquired PtdIns(3)Pwithin 1 min after uptake. Whereas phagosomes containing ΔicmTmutant bacteria remained decorated with PtdIns(3)P, more than 80% of wild-type LCVs gradually lost this PI within 2 h. The process was accompanied by a major rearrangement of PtdIns(3)P-positive membranes condensing to the cell center. PtdIns(4)Ptransiently localized to early phagosomes harboring wild-type or ΔicmT L. pneumophilaand was cleared within minutes after uptake. During the following 2 h, PtdIns(4)Psteadily accumulated only on wild-type LCVs, which maintained a discrete PtdIns(4)Pidentity spatially separated from calnexin-positive endoplasmic reticulum (ER) for at least 8 h. The separation of PtdIns(4)P-positive and ER membranes was even more pronounced for LCVs harboring ΔsidC-sdcAmutant bacteria defective for ER recruitment, without affecting initial bacterial replication in the pathogen vacuole. These findings elucidate the temporal and spatial dynamics of PI lipids implicated in LCV formation and provide insight into host cell membrane and effector protein interactions.IMPORTANCEThe environmental bacteriumLegionella pneumophilais the causative agent of Legionnaires’ pneumonia. The bacteria form in free-living amoebae and mammalian immune cells a replication-permissive compartment, theLegionella-containing vacuole (LCV). To subvert host cell processes, the bacteria secrete the amazing number of ~300 different proteins into host cells. Some of these proteins bind phosphoinositide (PI) lipids to decorate the LCV. PI lipids are crucial factors involved in host cell membrane dynamics and LCV formation. UsingDictyosteliumamoebae producing one or two distinct fluorescent probes, we elucidated the dynamic LCV PI pattern in high temporal and spatial resolution. Notably, the endocytic PI lipid PtdIns(3)Pwas slowly cleared from LCVs, thus incapacitating the host cell’s digestive machinery, while PtdIns(4)Pgradually accumulated on the LCV, enabling critical interactions with host organelles. The LCV PI pattern underlies the spatiotemporal configuration of bacterial effector proteins and therefore represents a crucial aspect of LCV formation.


2017 ◽  
Author(s):  
George Emanuel ◽  
Jeffrey R. Moffitt ◽  
Xiaowei Zhuang

AbstractImage-based, high-throughput, high-content screening of pooled libraries of genetic perturbations will greatly advance our understanding biological systems and facilitate many biotechnology applications. Here we introduce a high-throughput screening method that allows highly diverse genotypes and the corresponding phenotypes to be imaged in numerous individual cells. To facilitate genotyping by imaging, barcoded genetic variants are introduced into the cells, each cell carrying a single genetic variant connected to a unique, nucleic-acid barcode. To identify the genotype-phenotype correspondence, we perform live-cell imaging to determine the phenotype of each cell, and massively multiplexed FISH imaging to measure the barcode expressed in the same cell. We demonstrated the utility of this approach by screening for brighter and more photostable variants of the fluorescent protein YFAST. We imaged 20 million cells expressing ~60,000 YFAST mutants and identified novel YFAST variants that are substantially brighter and/or more photostable than the wild-type protein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiaojia Zheng ◽  
Zhi Yu ◽  
Yanping Yuan ◽  
Danli Sun ◽  
Yakubu Saddeeq Abubakar ◽  
...  

Ypt1 is a small Rab GTPase in yeast, Gyp1 functions at the Golgi as a negative regulator of Ypt1. Gyp1 homologs are conserved in filamentous fungi. However, the roles of Gyp1 in phytopathogenic fungi are still unclear. Herein, we investigated the functions of FgGyp1 in the wheat pathogen Fusarium graminearum by live-cell imaging, genetic, and pathological analyses. Targeted gene replacement method was used to delete FgGYP1 in F. graminearum. Phenotypic analyses showed that FgGyp1 is critically important not only for the vegetative growth of F. graminearum but also its conidiation. The mutant’s vegetative growth was significantly reduced by 70% compared to the wild type PH-1. The virulence of FgGYP1 deletion mutant was significantly decreased when compared with the wild type PH-1. We further found that FgGyp1 negatively regulates DON production of the fungus. Live-cell imaging clearly demonstrated that FgGyp1 mainly localizes to the Golgi apparatus. Moreover, the TBC domain, C-terminal, and N-terminal regions of FgGyp1 are found to be indispensable for its biological functions and normal localization. The Arg357 residue of FgGyp1 is essential for its functions but dispensable for the normal localization of the protein, while the Arg284 residue is not required for both the functions and normal localization of the protein. Furthermore, we showed that FgGyp1 essentially hydrolyzes the GTP-bound FgRab1 (activated form) to its corresponding GDP-bound (inactive) form in vitro, suggesting that FgGyp1 is a GTPase-activating protein (GAP) for FgRab1. Finally, FgGyp1 was found to be important for FgSnc1-mediated fusion of secretory vesicles from the Golgi with the plasma membrane in F. graminearum. Put together, these data demonstrate that FgGyp1 functions as a GAP for FgRab1 and is important for vegetative growth, conidiation and virulence, and negatively regulates DON biosynthesis in F. graminearum.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Gabriela Valenzuela ◽  
L. Enrique Castro ◽  
Julio Valencia-Zamora ◽  
Claudia A. Vera-Arias ◽  
Petra Rohrbach ◽  
...  

Abstract Background Malaria continues to be endemic in the coast and Amazon regions of Ecuador. Clarifying current Plasmodium falciparum resistance in the country will support malaria elimination efforts. In this study, Ecuadorian P. falciparum parasites were analysed to determine their drug resistance genotypes and phenotypes. Methods Molecular analyses were performed to search for mutations in known resistance markers (Pfcrt, Pfdhfr, Pfdhps, Pfmdr1, k13). Pfmdr1 copy number was determined by qPCR. PFMDR1 transporter activity was characterized in live parasites using live cell imaging in combination with the Fluo-4 transport assay. Chloroquine, quinine, lumefantrine, mefloquine, dihydroartemisinin, and artemether sensitivities were measured by in vitro assays. Results The majority of samples from this study presented the CVMNT genotype for Pfcrt (72–26), NEDF SDFD mutations in Pfmdr1 and wild type genotypes for Pfdhfr, Pfdhps and k13. The Ecuadorian P. falciparum strain ESM-2013 showed in vitro resistance to chloroquine, but sensitivity to quinine, lumefantrine, mefloquine, dihydroartemisinin and artemether. In addition, transport of the fluorochrome Fluo-4 from the cytosol into the digestive vacuole (DV) of the ESM-2013 strain was minimally detected in the DV. All analysed samples revealed one copy of Pfmdr1. Conclusion This study indicates that Ecuadorian parasites presented the genotype and phenotype for chloroquine resistance and were found to be sensitive to SP, artemether-lumefantrine, quinine, mefloquine, and dihydroartemisinin. The results suggest that the current malaria treatment employed in the country remains effective. This study clarifies the status of anti-malarial resistance in Ecuador and informs the P. falciparum elimination campaigns in the country.


2005 ◽  
Vol 170 (2) ◽  
pp. 237-248 ◽  
Author(s):  
Erik E. Griffin ◽  
Johannes Graumann ◽  
David C. Chan

The mitochondrial division machinery regulates mitochondrial dynamics and consists of Fis1p, Mdv1p, and Dnm1p. Mitochondrial division relies on the recruitment of the dynamin-related protein Dnm1p to mitochondria. Dnm1p recruitment depends on the mitochondrial outer membrane protein Fis1p. Mdv1p interacts with Fis1p and Dnm1p, but is thought to act at a late step during fission because Mdv1p is dispensable for Dnm1p localization. We identify the WD40 repeat protein Caf4p as a Fis1p-associated protein that localizes to mitochondria in a Fis1p-dependent manner. Caf4p interacts with each component of the fission apparatus: with Fis1p and Mdv1p through its NH2-terminal half and with Dnm1p through its COOH-terminal WD40 domain. We demonstrate that mdv1Δ yeast contain residual mitochondrial fission due to the redundant activity of Caf4p. Moreover, recruitment of Dnm1p to mitochondria is disrupted in mdv1Δ caf4Δ yeast, demonstrating that Mdv1p and Caf4p are molecular adaptors that recruit Dnm1p to mitochondrial fission sites. Our studies support a revised model for assembly of the mitochondrial fission apparatus.


Sign in / Sign up

Export Citation Format

Share Document