scholarly journals A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

2012 ◽  
Vol 23 (16) ◽  
pp. 3266-3274 ◽  
Author(s):  
Miguel Jarrin ◽  
Tanushree Pandit ◽  
Lena Gunhaga

In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals.

2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


1994 ◽  
Vol 14 (10) ◽  
pp. 6743-6754 ◽  
Author(s):  
L Fromm ◽  
W Shawlot ◽  
K Gunning ◽  
J S Butel ◽  
P A Overbeek

Regulation of the cell cycle is a critical aspect of cellular proliferation, differentiation, and transformation. In many cell types, the differentiation process is accompanied by a loss of proliferative capability, so that terminally differentiated cells become postmitotic and no longer progress through the cell cycle. In the experiments described here, the ocular lens has been used as a system to examine the role of the retinoblastoma protein (pRb) family in regulation of the cell cycle during differentiation. The ocular lens is an ideal system for such studies, since it is composed of just two cell types: epithelial cells, which are capable of proliferation, and fiber cells, which are postmitotic. In order to inactivate pRb in viable mice, genes encoding either a truncated version of simian virus 40 large T antigen or the E7 protein of human papillomavirus were expressed in a lens-specific fashion in transgenic mice. Lens fiber cells in the transgenic mice were found to incorporate bromodeoxyuridine, implying inappropriate entry into the cell cycle. Surprisingly, the lens fiber cells did not proliferate as tumor cells but instead underwent programmed cell death, resulting in lens ablation and microphthalmia. Analogous lens alterations did not occur in mice expressing a modified version of the truncated T antigen that was mutated in the binding domain for the pRb family. These experimental results indicate that the retinoblastoma protein family plays a crucial role in blocking cell cycle progression and maintaining terminal differentiation in lens fiber cells. Apoptotic cell death ensues when fiber cells are induced to remain in or reenter the cell cycle.


Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 773-788
Author(s):  
Françoise Simon ◽  
Anne Ramat ◽  
Sophie Louvet-Vallée ◽  
Jérôme Lacoste ◽  
Angélique Burg ◽  
...  

Cell diversity in multicellular organisms relies on coordination between cell proliferation and the acquisition of cell identity. The equilibrium between these two processes is essential to assure the correct number of determined cells at a given time at a given place. Using genetic approaches and correlative microscopy, we show that Tramtrack-69 (Ttk69, a Broad-complex, Tramtrack and Bric-à-brac - Zinc Finger (BTB-ZF) transcription factor ortholog of the human promyelocytic leukemia zinc finger factor) plays an essential role in controlling this balance. In the Drosophila bristle cell lineage, which produces the external sensory organs composed by a neuron and accessory cells, we show that ttk69 loss-of-function leads to supplementary neural-type cells at the expense of accessory cells. Our data indicate that Ttk69 (1) promotes cell cycle exit of newborn terminal cells by downregulating CycE, the principal cyclin involved in S-phase entry, and (2) regulates cell-fate acquisition and terminal differentiation, by downregulating the expression of hamlet and upregulating that of Suppressor of Hairless, two transcription factors involved in neural-fate acquisition and accessory cell differentiation, respectively. Thus, Ttk69 plays a central role in shaping neural cell lineages by integrating molecular mechanisms that regulate progenitor cell cycle exit and cell-fate commitment.


2019 ◽  
Vol 47 (16) ◽  
pp. 8439-8451 ◽  
Author(s):  
Alberto González-Medina ◽  
Elena Hidalgo ◽  
José Ayté

Abstract In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.


2009 ◽  
Vol 29 (7) ◽  
pp. 1895-1908 ◽  
Author(s):  
Steve Bilodeau ◽  
Audrey Roussel-Gervais ◽  
Jacques Drouin

ABSTRACT Patterning and differentiation signals are often believed to drive the developmental program, including cell cycle exit of proliferating progenitors. Taking advantage of the spatial and temporal separation of proliferating and differentiated cells within the developing anterior pituitary gland, we investigated the control of cell proliferation during organogenesis. Thus, we identified a population of noncycling precursors that are uniquely marked by expression of the cell cycle inhibitor p57Kip2 and by cyclin E. In p57Kip2−/− mice, the developing pituitary is hyperplastic due to accumulation of proliferating progenitors, whereas overexpression of p57Kip2 leads to hypoplasia. p57Kip2-dependent cell cycle exit is not required for differentiation, and conversely, blockade of cell differentiation, as achieved in Tpit−/− pituitaries, does not prevent cell cycle exit but rather leads to accumulation of p57Kip2-positive precursors. Upon differentiation, p57Kip2 is replaced by p27Kip1. Accordingly, proliferating differentiated cells are readily detected in p27Kip1−/− pituitaries but not in wild-type or p57Kip2−/− pituitaries. Strikingly, all cells of p57Kip2−/−;p27Kip1−/− pituitaries are proliferative. Thus, during normal development, progenitor cell cycle exit is controlled by p57Kip2 followed by p27Kip1 in differentiated cells; these sequential actions, taken together with different pituitary outcomes of their loss of function, suggest hierarchical controls of the cell cycle that are independent of differentiation.


2008 ◽  
Vol 509 (5) ◽  
pp. 474-492 ◽  
Author(s):  
Alcmène Chalazonitis ◽  
Tuan D. Pham ◽  
Zhishan Li ◽  
Daniel Roman ◽  
Udayan Guha ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 13060
Author(s):  
Yo Niida ◽  
Sumihito Togi ◽  
Hiroki Ura

Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.


Author(s):  
Ronald H. Bradley ◽  
Jose Alcala ◽  
Harry Maisel

Filaments (average diameter, 12 nm) are a prominent feature of the water- insoluble fraction of chick lens fiber cells (1) (fig. 1). Isolation of the filaments was achieved in the following manner. The lens fiber mass was homogenized in standard salt solution pH 7.2 to which 10 mM B-mercaptoethanol was added. The homogenate was centrifuged at 37,000 g for 20 min. and the pellet washed in buffer until free of soluble proteins (lens crystallins) when tested with antisera to the crystallins. The pellet was then extracted in 8M urea and centrifuged at 77,000 g for 15 min. The membrane-rich pellet was discarded and the urea-soluble fraction was dialysed against the buffer to remove the urea. Negative stain analysis showed that intact filaments were present in the urea-free solution (UFS).A pellet rich in filaments was obtained by centrifugation of the UFS at 77,000 g for 1 hr. (fig. 2).


2016 ◽  
Vol 38 (6) ◽  
pp. 2173-2182 ◽  
Author(s):  
Lu Wang ◽  
Lei Yang ◽  
Ying Lu ◽  
Yingzhun Chen ◽  
Tianhua Liu ◽  
...  

Background/Aims: Osteosarcoma is the second highest cause of cancer-related death in children and adolescents. Majority of osteosarcoma patients (90%) show metastasis. Previous reports revealed that osthole showed antitumor activities via induction of apoptosis and inhibition of proliferation. However, the potential effects and detailed molecular mechanisms involved remained unclear. Methods: Cell viability was analyzed by MTT assay in osteosarcoma cell lines MG-63 and SAOS-2. Cell cycle was detected by flow cytometry. The effects of migration and invasion were evaluated by wound healing assay and transwell assays. Moreover, the level of proteins expression was determined by Western blot. Results: The cell viability of MG63 and SAOS-2 were markedly inhibited by osthole in a dose- and time-dependent manner. Cell cycle was arrested and the ability of migration and invasion was obviously reduced when cells were exposed to osthole. Moreover, enzymes involved in PTEN/Akt pathway were regulated such as PTEN and p-Akt proteins. Furthermore, osthole inhibited the tumor growth in vivo. Conclusion: Our study unraveled, for the first time, the ability of osthole to suppress osteosarcoma and elucidated the regulation of PTEN/Akt pathway as a signaling mechanism for the anti-tumor action of osthole. These findings indicate that osthole may represent a novel therapeutic strategy in the treatment of osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document