scholarly journals Role of BMP receptor traffic in synaptic growth defects in an ALS model

2016 ◽  
Vol 27 (19) ◽  
pp. 2898-2910 ◽  
Author(s):  
Mugdha Deshpande ◽  
Zachary Feiger ◽  
Amanda K. Shilton ◽  
Christina C. Luo ◽  
Ethan Silverman ◽  
...  

TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth–promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor–containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43–induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment.

2021 ◽  
Author(s):  
Mathieu Bartoletti ◽  
Tracy Knight ◽  
Aaron Held ◽  
Laura M. Rand ◽  
Kristi A. Wharton

ABSTRACTThe nervous system is a complex network of cells whose interactions provide circuitry necessary for an organism to perceive and move through its environment. Revealing the molecular basis of how neurons and non-neuronal glia communicate is essential for understanding neural development, behavior, and abnormalities of the nervous system. BMP signaling in motor neurons, activated in part by retrograde signals from muscle expressed Gbb (BMP5/6/7) has been implicated in synaptic growth, function and plasticity inDrosophila melanogaster. Through loss-of-function studies, we establish Gbb as a critical mediator of glia to neuron signaling important for proper synaptic growth. Furthermore, the BMP2/4 ortholog, Dpp, expressed in a subset of motor neurons, acts by autocrine signaling to also facilitate neuromuscular junction (NMJ) growth at specific muscle innervation sites. In addition to signaling from glia to motor neurons, autocrine Gbb induces signaling in larval VNC glia which strongly express the BMP type II receptor, Wit. In addition to Dpp’s autocrine motor neuron signaling, Dpp also engages in paracrine signaling to adjacent glia but not to neighboring motor neurons. In one type of dorsal midline motor neuron, RP2,dpptranscription is under tight regulation, as its expression is under autoregulatory control in RP2 but not aCC neurons. Taken together our findings indicate that bi-directional BMP signaling, mediated by two different ligands, facilitates communication between glia and neurons. Gbb, prominently expressed in glia, and Dpp acting from a discrete set of neurons induce active Smad-dependent BMP signaling to influence bouton number during neuromuscular junction growth.


2010 ◽  
Vol 31 (2) ◽  
pp. 263-263
Author(s):  
Mark A. Edson ◽  
Caterina Clementi ◽  
Roopa L. Nalam ◽  
Heather L. Franco ◽  
Francesco J. DeMayo ◽  
...  

ABSTRACT Bone morphogenetic proteins (BMPs) have diverse roles in development and reproduction. Although several BMPs are produced by oocytes, thecal cells, and granulosa cells of developing follicles, the in vivo functions of most of these ligands are unknown. BMP signals are transduced by multiple type I and type II transforming growth factor β (TGFβ) family receptors, and of the type I receptors, BMP receptor 1A (BMPR1A) and BMP receptor 1B (BMPR1B) are known to be expressed in rodent granulosa cells. Female mice homozygous null for Bmpr1b are sterile due to compromised cumulus expansion, but the function of BMPR1A in the ovary is unknown. To further decipher a role for BMP signaling in mouse granulosa cells, we deleted Bmpr1a in the granulosa cells of the ovary and found Bmpr1a conditional knockout females to be subfertile with reduced spontaneous ovulation. To explore the redundant functions of BMP receptor signaling in the ovary, we generated Bmpr1a Bmpr1b double mutant mice, which developed granulosa cell tumors that have evidence of increased TGFβ and hedgehog signaling. Thus, similar to SMAD1 and SMAD5, which have redundant roles in suppressing granulosa cell tumor development in mice, two type I BMP receptors, BMPR1A and BMPR1B, function together to prevent ovarian tumorigenesis. These studies support a role for a functional BMP signaling axis as a tumor suppressor pathway in the ovary, with BMPR1A and BMPR1B acting downstream of BMP ligands and upstream of BMP receptor SMADs.


2006 ◽  
Vol 26 (20) ◽  
pp. 7791-7805 ◽  
Author(s):  
Anke Hartung ◽  
Keren Bitton-Worms ◽  
Maya Mouler Rechtman ◽  
Valeska Wenzel ◽  
Jan H. Boergermann ◽  
...  

ABSTRACT Endocytosis is important for a variety of functions in eukaryotic cells, including the regulation of signaling cascades via transmembrane receptors. The internalization of bone morphogenetic protein (BMP) receptor type I (BRI) and type II (BRII) and its relation to signaling were largely unexplored. Here, we demonstrate that both receptor types undergo constitutive endocytosis via clathrin-coated pits (CCPs) but that only BRII undergoes also caveola-like internalization. Using several complementary approaches, we could show that (i) BMP-2-mediated Smad1/5 phosphorylation occurs at the plasma membrane in nonraft regions, (ii) continuation of Smad signaling resulting in a transcriptional response requires endocytosis via the clathrin-mediated route, and (iii) BMP signaling leading to alkaline phosphatase induction initiates from receptors that fractionate into cholesterol-enriched, detergent-resistant membranes. Furthermore, we show that BRII interacts with Eps15R, a constitutive component of CCPs, and with caveolin-1, the marker protein of caveolae. Taken together, the localization of BMP receptors in distinct membrane domains is prerequisite to their taking different endocytosis routes with specific impacts on Smad-dependent and Smad-independent signaling cascades.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeyoon Lee ◽  
Carina Seidl ◽  
Rui Sun ◽  
Andrey Glinka ◽  
Christof Niehrs

Abstract BMP signaling plays key roles in development, stem cells, adult tissue homeostasis, and disease. How BMP receptors are extracellularly modulated and in which physiological context, is therefore of prime importance. R-spondins (RSPOs) are a small family of secreted proteins that co-activate WNT signaling and function as potent stem cell effectors and oncogenes. Evidence is mounting that RSPOs act WNT-independently but how and in which physiological processes remains enigmatic. Here we show that RSPO2 and RSPO3 also act as BMP antagonists. RSPO2 is a high affinity ligand for the type I BMP receptor BMPR1A/ALK3, and it engages ZNRF3 to trigger internalization and degradation of BMPR1A. In early Xenopus embryos, Rspo2 is a negative feedback inhibitor in the BMP4 synexpression group and regulates dorsoventral axis formation. We conclude that R-spondins are bifunctional ligands, which activate WNT- and inhibit BMP signaling via ZNRF3, with implications for development and cancer.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nathan L Absalom ◽  
Vivian W Y Liao ◽  
Kavitha Kothur ◽  
Dinesh C Indurthi ◽  
Bruce Bennetts ◽  
...  

Abstract Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 470
Author(s):  
Jeremy W. Prokop ◽  
Caleb P. Bupp ◽  
Austin Frisch ◽  
Stephanie M. Bilinovich ◽  
Daniel B. Campbell ◽  
...  

Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1675-1695 ◽  
Author(s):  
Frans E Tax ◽  
James H Thomas ◽  
Edwin L Ferguson ◽  
H Robert Horvitzt

Abstract We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-l7, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup1 7 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup1 7and lag-2, suggest that both genes act at approximately the same time as lin-12in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.


2021 ◽  
Vol 22 (15) ◽  
pp. 8247
Author(s):  
Cheng-Tsung Hsiao ◽  
Thomas F. Tropea ◽  
Ssu-Ju Fu ◽  
Tanya M. Bardakjian ◽  
Pedro Gonzalez-Alegre ◽  
...  

Loss-of-function mutations in the KV4.3 channel-encoding KCND3 gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia. The mechanism underlying brain iron accumulation remains unclear. Here, we aim to ascertain the potential pathogenic role of KCND3 variant in iron accumulation-related cerebellar ataxia. We presented a patient with slowly progressive cerebellar ataxia, parkinsonism, cognitive impairment, and iron accumulation in the basal ganglia and the cerebellum. Whole exome sequencing analyses identified in the patient a heterozygous KCND3 c.1256G>A (p.R419H) variant predicted to be disease-causing by multiple bioinformatic analyses. In vitro biochemical and immunofluorescence examinations revealed that, compared to the human KV4.3 wild-type channel, the p.R419H variant exhibited normal protein abundance and subcellular localization pattern. Electrophysiological investigation, however, demonstrated that the KV4.3 p.R419H variant was associated with a dominant increase in potassium current amplitudes, as well as notable changes in voltage-dependent gating properties leading to enhanced potassium window current. These observations indicate that, in direct contrast with the loss-of-function KCND3 mutations previously reported in cerebellar ataxia patients, we identified a rare gain-of-function KCND3 variant that may expand the clinical and molecular spectra of neurodegenerative cerebellar disorders associated with brain iron accumulation.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
POD O"drisceoil ◽  
TK Kiernan ◽  
SA Arnous

Abstract Funding Acknowledgements Type of funding sources: None. BACKGROUNDCYP2C19 loss-of-function (LOF) polymorphisms are associated with adverse ischaemic events after PCI. The use of a point-of-care assay (POC) to routinely genotype patients immediately post PCI could rapidly identify patients at risk of adverse cardiac outcomes. PURPOSE To investigate the incidence of CYP2C19 polymorphisms (*2, *17) and 30-day MACE in patients presenting to catheter laboratory for PCI (See table 1).METHODS We performed a single centre prospective analysis of patients presenting to a cardiac catheterisation laboratory for percutaneous coronary intervention. Participants underwent prospective rapid point-of-care genotyping of CYP2C19 major alleles (2*,17*), using the SpartanRx PCR device via buccal swab sample. All patients provided written consent. RESULTS:A total of 120 tests were performed, 51 patients were normal allele carriers (*1), 31 patients were carriers of LOF alleles (*2) and 38 patients were carriers of gain of function alleles (*17). All tests results returned in one hour. Rate of dyslipidaemia was significantly different between three groups (55% vs. 63% vs. 36%; p = 0.050). A numerically higher proportion of LOF allele carriers received clopidogrel prior to undergoing pharmacogenetic testing but this was not statistically significant (52% vs. 35% vs. 34%; p = 0.09). Two cases of MACE at 30 day follow up occurred in the loss-of-function group. Both cases received clopidogrel.CONCLUSIONSWe have demonstrated that a rapid POC of CYP2C19 testing can take place in a real-world setting. Our incidence rate of LOF carriers is concordant with international published literature. We found 52% of LOF carriers were commenced on clopidogrel therapy prior to genetic analysis. Comparison of CPY2C19 Metabolisers genotype Loss of function normal Gain of function p values baseline characteristics age in years, median (range) 65 (43-82) 64 (43-85) 65 (42-89) 0.717 Male, N (%) 21 (68%) 43 (64%) 27 (71%) 0.198 Hypertensive, N (%) 16 (52%) 29 (57%) 24 (50%) 0.623 Dyslipidaemia. N (%) 17 (55%) 32 (63%) 14 (36%) 0.050 Indication, N (%) St-Elevation MI 12 (39%) 18 (35%) 11 (29%) 0.558 NSTEMI 5 (16%) 15 (29%) 14 (37%) 0.142 Unstable Angina 5 (16%) 7 (14%) 3 (8%) 0.518 Stable CAD 9 (29%) 11 (22%) 10 (26%) 0.731 Antiplatelet, N (%) Ticagrelor 15 (48%) 33 (65%) 25 (66%) 0.09 Clopidogrel 16 (52%) 18 (35%) 13 (34%) Complication, N (%) 30-day MACE 2 (6.5%) 0 0 0.01


Sign in / Sign up

Export Citation Format

Share Document