scholarly journals Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin

2009 ◽  
Vol 42 (1) ◽  
pp. 80-89 ◽  
Author(s):  
B. Li ◽  
X. Chu ◽  
M. Gao ◽  
W. Li
2016 ◽  
Vol 31 (7) ◽  
pp. 1010-1025 ◽  
Author(s):  
Xiali Zhu ◽  
Heqing Huang ◽  
Yingjie Zhang ◽  
Huijuan Zhang ◽  
Lin Hou ◽  
...  

Safe and efficient drug delivery in a controllable fashion, especially remote and repeatable switch of on-demand drug release, is the subject of widespread attention. A kind of magnetic nanoparticles (DOX-Cit/CuS@Fe3O4-NPs) simultaneously consisted of Cit/CuS@Fe3O4 and doxorubicin (DOX) was presented. The drug release from DOX-Cit/CuS@Fe3O4-NPs could be successfully triggered by the presence of gelatinase, showing great promise for tumor-targeted drug release through an enzymatic degradation mechanism. Compared with free DOX, DOX-Cit/CuS@Fe3O4-NPs could not only specially deliver Cit/CuS@Fe3O4 and DOX into MCF-7 cells, but also could greatly improve the quantity of ROS produced in MCF-7 cells under of 980 nm laser irradiation. DOX-Cit/CuS@Fe3O4-NPs also had highly selective accumulation at tumor tissue of S180 tumor-bearing mice, which were along with a magnet near the tumor site. Furthermore, when combined with NIR laser irridation, DOX-Cit/CuS@Fe3O4-NPs showed a higher antitumor efficacy than the individual therapies in vitro and in vivo. This study showed that DOX-Cit/CuS@Fe3O4-NPs could be used as a platform for tumor chemotherapy, photothermal and photodynamic therapy.


Author(s):  
S. Zheng ◽  
W. Fu ◽  
R. Ma ◽  
Q. Huang ◽  
J. Gu ◽  
...  

Abstract Purpose To explore the effects of the intervening measure targeting myeloid differentiation 2 (MD2) on breast cancer progression in vitro and in vivo. Methods The expression of MD2 in normal breast cells (Hs 578Bst) and three kinds of breast carcinoma cell lines (MCF-7, MDA-MB-231 s and 4T1) were detected by western blot. MTT assay was used to detect the proliferation of 4T1 cells treated by L6H21, cell migration and invasion was measured by wound healing assay and trans-well matrigel invasion assay, respectively. In addition, to further study the role of MD2 in tumor progression, we assessed the effects of inhibition of MD2 on the progression of xenograft tumors in vivo. Results The expression of MD2 is much higher in MDA-MB-231 s and 4T1cells than that in normal breast cells (Hs 578Bst) or MCF-7 cells (p < 0.05). In vitro, suppression of MD2 by L6H21 has a significant inhibition of proliferation, migration and invasion in 4T1 cells in dose-dependent manner. In vivo, L6H21 pretreatment significantly improved survival of 4T1-bearing mice (p < 0.05). Additionally, we also observed that none of the mice died from the toxic effect of 10 mg kg−1 L6H21 in 60 days. Conclusion Overall, this work indicates that suppression of MD2 shows progression inhibition in vitro and significantly prolong survival in vivo. These findings provide the potential experimental evidence for using MD2 as a therapeutic target of breast carcinoma.


2021 ◽  
Author(s):  
Shurong Zheng ◽  
Weida Fu ◽  
Ruimin Ma ◽  
Qidi Huang ◽  
Junwei Gu ◽  
...  

Abstract Background: To explore the effects of the intervening measure targeting myeloid differentiation 2 (MD2) on breast cancer progression in vitro and in vivo. Methods: The expression of MD2 in normal breast cells (Hs 578Bst) and three kinds of breast carcinoma cell lines (MCF-7, MDA-MB-231s and 4T1) were detected by western blot. MTT assay was used to detect the proliferation of 4T1 cells treated by L6H21, cell migration and invasion was measured by wound healing assay and transwell matrigel invasion assay, respectively. In addition, to further study the role of MD2 in tumor progression, we assessed the effects of inhibition of MD2 on the progression of xenograft tumors in vivo.Results: The expression of MD2 is much higher in MDA-MB-231s and 4T1cells than that in normal breast cells (Hs 578Bst) or MCF-7 cells (P <0.05). In vitro, suppression of MD2 by L6H21 has a significant inhibition of proliferation, migration and invasion in 4T1 cells in dose-dependent manner. In vivo, L6H21 pretreatment significanly improved survival of 4T1-bearing mice (P <0.05). Additionally, we also observed that there was none of the mice died from the toxic of 10 mg·kg−1 L6H21 in 60 days. Conclusion: Overall, this work indicates that suppression of MD2 shows progression inhibition in vitro and significantly prolong survival in vivo. These findings provide the potential experimental evidence for using MD2 as a therapeutic target of breast carcinoma.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


Author(s):  
Ya-Nan Li ◽  
Ni Ning ◽  
Lei Song ◽  
Yun Geng ◽  
Jun-Ting Fan ◽  
...  

Background: Deoxypodophyllotoxin, isolated from theTraditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant antitumor activity with strong toxicity in vitro and in vivo. Objective: In this article, we synthesized a series of deoxypodophyllotoxin derivatives, and evaluated their antitumor effectiveness.Methods:The anti tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC. Results: The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29 andMG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit. Conclusion: The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1033
Author(s):  
Ji Hwan Lee ◽  
Sullim Lee ◽  
Quynh Nhu Nguyen ◽  
Hung Manh Phung ◽  
Myoung-Sook Shin ◽  
...  

Estrogen replacement therapy is a treatment to relieve the symptoms of menopause. Many studies suggest that natural bioactive ingredients from plants resemble estrogen in structure and biological functions and can relieve symptoms of menopause. The fruit of V. rotundifolia, called “Man HyungJa” in Korean, is a traditional medicine used to treat headache, migraine, eye pain, neuralgia, and premenstrual syndrome in Korea and China. The aim of the present study was to confirm that V. rotundifolia fruit extract (VFE) exerts biological functions similar to those of estrogen in menopausal syndrome. We investigated its in vitro effects on MCF-7 cells and in vivo estrogen-like effects on weight gain and uterine contraction in ovariectomized rats. Using the polar extract, the active constituents of VFE (artemetin, vitexicarpin, hesperidin, luteolin, vitexin, and vanillic acid) with estrogen-like activity were identified in MCF-7 cells. In animal experiments, the efficacy of VFE in ameliorating body weight gain was similar to that of estrogen, as evidenced from improvements in uterine atrophy. Vitexin and vitexicarpin are suggested as the active constituents of V. rotundifolia fruits.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


2021 ◽  
Vol 12 (1) ◽  
pp. 8-15
Author(s):  
Ainaz Mihanfar ◽  
Niloufar Targhazeh ◽  
Shirin Sadighparvar ◽  
Saber Ghazizadeh Darband ◽  
Maryam Majidinia ◽  
...  

Abstract Doxorubicin (DOX) is an effective chemotherapeutic agent used for the treatment of various types of cancer. However, its poor solubility, undesirable side effects, and short half-life have remained a challenge. We used a formulation based on graphene oxide as an anticancer drug delivery system for DOX in MCF-7 breast cancer cells, to address these issues. In vitro release studies confirmed that the synthesized formulation has an improved release profile in acidic conditions (similar to the tumor microenvironment). Further in vitro studies, including MTT, uptake, and apoptosis assays were performed. The toxic effects of the nanocarrier on the kidney, heart and liver of healthy rats were also evaluated. We observed that the DOX-loaded carrier improved the cytotoxic effect of DOX on the breast cell line compared to free DOX. In summary, our results introduce the DOX-loaded carrier as a potential platform for in vitro targeting of cancer cells and suggest further studies are necessary to investigate its in vivo anti-cancer potential.


2021 ◽  
Vol 22 (15) ◽  
pp. 8106
Author(s):  
Tianming Song ◽  
Yawei Qu ◽  
Zhe Ren ◽  
Shuang Yu ◽  
Mingjian Sun ◽  
...  

Despite the numerous available treatments for cancer, many patients succumb to side effects and reoccurrence. Zinc oxide (ZnO) quantum dots (QDs) are inexpensive inorganic nanomaterials with potential applications in photodynamic therapy. To verify the photoluminescence of ZnO QDs and determine their inhibitory effect on tumors, we synthesized and characterized ZnO QDs modified with polyvinylpyrrolidone. The photoluminescent properties and reactive oxygen species levels of these ZnO/PVP QDs were also measured. Finally, in vitro and in vivo experiments were performed to test their photodynamic therapeutic effects in SW480 cancer cells and female nude mice. Our results indicate that the ZnO QDs had good photoluminescence and exerted an obvious inhibitory effect on SW480 tumor cells. These findings illustrate the potential applications of ZnO QDs in the fields of photoluminescence and photodynamic therapy.


1996 ◽  
Author(s):  
J. J. Schuitmaker ◽  
Jaap A. Van Best ◽  
J. L. van Delft ◽  
J. E. Jannink ◽  
J. A. Oosterhuis ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document