Insight into the collagen-degrading activity of a serine protease in the latex of Ficus carica cultivar Masui Dauphine

Author(s):  
Kosaku Nishimura ◽  
Keisuke Higashiya ◽  
Naoki Ueshima ◽  
Kenji Kojima ◽  
Teisuke Takita ◽  
...  

Abstract Ficus carica produces, in addition to the cysteine protease ficin, a serine protease. Earlier study on a serine protease from F. carica cultivar Brown Turkey showed that it specifically degraded collagen. In this study, we characterized the collagenolytic activity of a serine protease in the latex of F. carica cultivar Masui Dauphine. The serine protease degraded denatured, but not undenatured, acid-solubilized type I collagen. It also degraded bovine serum albumin, while the collagenase from Clostridium histolyticum did not. These results indicated that the serine protease in Masui Dauphine is not collagen-specific. The protease was purified to homogeneity by two-dimensional gel electrophoresis, and its partial amino acid sequence was determined by liquid chromatography-MS/MS. BLAST searches against the Viridiplantae (green plants) genome database revealed that the serine protease was a subtilisin-like protease. Our results contrast with the results of the earlier study stating that the serine protease from F. carica is collagen-specific.

2004 ◽  
Vol 167 (4) ◽  
pp. 757-767 ◽  
Author(s):  
Tae-Hwa Chun ◽  
Farideh Sabeh ◽  
Ichiro Ota ◽  
Hedwig Murphy ◽  
Kevin T. McDonagh ◽  
...  

During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix–degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP–dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., β3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.


1993 ◽  
Vol 290 (3) ◽  
pp. 873-884 ◽  
Author(s):  
H C Blair ◽  
S L Teitelbaum ◽  
L E Grosso ◽  
D L Lacey ◽  
H L Tan ◽  
...  

Osteoclasts degrade bone matrix, which is mainly type I collagen and hydroxyapatite, in an acidic extracellular compartment. Thus we reasoned that osteoclasts must produce an acid collagenase. We purified this enzyme, a 31 kDa protein, from avian osteoclast lysates (in 100 mM acetate/1 mM CHAPS/1 mM dithiothreitol, pH 4.4), fractionated by (NH2)2SO4 precipitation, gelatin-affinity, cation exchange, and gel filtration. Fraction activity was measured using diazotized collagen or 3H-labelled cross-linked collagen (decalcified and trypsin-treated metabolically L-[4,5-3H]proline-labelled bone) as substrates. Iodoacetate, leupeptin, antipain, pepstatin and mercurials inhibited collagenolysis by the isolated proteinase; mercurial derivatives could not be re-activated by dithiothreitol. Collagen degradation was maximal at pH 4.4; purified proteinase reproduced the collagenolytic activity of cell lysates. The N-terminal amino acid sequence from the isolated protein and its CNBr degradation fragments showed sequence similarity to mammalian cathepsin Bs, and near-identity with avian liver cathepsin B. Peptide substrate specificity of the osteoclastic enzyme resembled those of mammalian cathepsin B and its avian liver counterpart, but degradation of low-molecular-mass substrates by the osteoclastic enzyme was slower, reflecting generally lower kcat. values. Further, kcat/Km varied less between arginine-containing substrates than for previously reported cathepsin Bs, indicating different substrate specificity of the osteoclast enzyme. Polyclonal antibody raised to a 25 kDa fragment of the enzyme recognized a single 31 kDa band in SDS/PAGE of osteoclast lysates blotted to poly(vinylidene difluoride), adsorbed collagenolytic activity of osteoclast lysates, and stained avian osteoclasts in tissue sections. Degenerate sense- and antisense-oligonucleotide primers, predicted from segments of primary amino acid sequence, amplified a 486 bp DNA fragment; this was cloned and sequenced. Of 162 amino acids encoded, 77% are identical with those of human cathepsin B; hybridization identified a 2.4 kb RNA in osteoclast lysates. We conclude that the major avian osteoclast collagenolytic enzyme is a cathepsin B, whose activity varies from other enzymes of its class.


1976 ◽  
Vol 153 (2) ◽  
pp. 259-264 ◽  
Author(s):  
V Lee-Own ◽  
J C Anderson

We studied the interaction of proteoglycan subunit with both types I and II collagen. All three molecular species were isolated from the ox. Type II collagen, prepared from papain-digested bovine nasal cartilage, was characterized by gel electrophoresis, amino acid analysis and CM-cellulose chromatography. By comparison of type I collagen, prepared from papain-digested calf skin, with native calf skin acid-soluble tropocollagen, we concluded that the papain treatment left the collagen molecules intact. Interactions were carried out at 4 degrees C in 0.06 M-sodium acetate, pH 4.8, and the results were studied by two slightly different methods involving CM-cellulose chromatography and polyacrylamide-gel electrophoresis. It was demonstrated that proteoglycan subunit, from bovine nasal cartilage, bound to cartilage collagen. Competitive-interaction experiments showed that, in the presence of equal amounts of calf skin acid-soluble tropocollagen (type I) and bovine nasal cartilage collagen (type II), proteoglycan subunit bound preferentially to the type I collagen. We suggest from these results that, although not measured under physiological conditions, it is unlikely that the binding in vivo between type II collagen and proteoglycan is appreciably stronger than that between type I collagen and proteoglycan.


1993 ◽  
Vol 264 (4) ◽  
pp. G589-G595 ◽  
Author(s):  
D. A. Brenner ◽  
J. Westwick ◽  
M. Breindl

Cirrhosis is characterized by an increased deposition of extracellular matrix proteins, including type I collagen. Type I collagen is a product of two genes, alpha 1(I) and alpha 2(I), which are generally coordinately regulated. Since expression of type I collagen genes is increased during cirrhosis, understanding the structure and function of the regulatory components of the type I collagen genes should provide insight into the molecular pathogenesis of cirrhosis. This review will analyze the collagen alpha 1(I) gene with respect to chromatin structure, DNA methylation, regulation by agonists, and DNA-protein interactions.


2005 ◽  
Vol 73 (2) ◽  
pp. 883-893 ◽  
Author(s):  
Ryosuke Takii ◽  
Tomoko Kadowaki ◽  
Atsuyo Baba ◽  
Takayuki Tsukuba ◽  
Kenji Yamamoto

ABSTRACT Arg-gingipain (Rgp) and Lys-gingipain (Kgp) are Porphyromonas gingivalis cysteine proteinases implicated as major virulence factors in pathologies of periodontitis. We purified a 660-kDa cell-associated gingipain complex existing as a homodimer of two catalytically active monomers which comprises their catalytic and adhesin domains. Electron microscopy revealed that the complex was composed of a globular particle with a 10-nm external diameter possessing one or two electron-dense hole-like structures. Two-dimensional gel electrophoresis and immunoblot analyses revealed the association of lipopolysaccharide (LPS) with the catalytic domains and a hemagglutinin domain, Hgp44, of Rgp and Kgp in the complex. The complex significantly degraded human type I collagen and elastin and strongly disrupted viability of human gingival fibroblasts and umbilical vein endotherial cells with an efficiency which was higher than that of the monomeric gingipains. The native complex produced only a small amount of nitrogen dioxide, tumor necrosis factor alpha, and interleukin-6 by macrophages, whereas the heat-denatured complex resulted in increased production. Inhibition of the proteolytic activities of the gingipain complex did not up-regulate the cytokine production, indicating that the functional domains in LPS are structurally masked by the complex proteins. These results indicate the importance of the complex in evasion of host defense mechanisms as well as in host tissue breakdown.


1998 ◽  
Vol 331 (3) ◽  
pp. 727-732 ◽  
Author(s):  
Wa'el KAFIENAH ◽  
Dieter BRÖMME ◽  
David J. BUTTLE ◽  
Lisa J. CROUCHER ◽  
Anthony P. HOLLANDER

Cathepsin K (EC 3.4.22.38) is a recently described enzyme that has been shown to cleave type I collagen in its triple helix. The aim of this study was to determine if it also cleaves type II collagen in the triple helix and to identify the helical cleavage site(s) in types I and II collagens. Soluble human and bovine type II collagen, and rat type I collagen, were incubated with cathepsin K before the reaction was stopped with trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64). Analysis by SDS/PAGE of the collagen digests showed that optimal activity of cathepsin K against native type II collagen was between pH 5.0 and 5.5 and against denatured collagen between pH 4.0 and 7.0. The enzyme cleaved telopeptides as well as the α1(II) chains, generating multiple fragments in the range 90–120 kDa. The collagenolytic activity was not due to a contaminating metalloenzyme or serine proteinase as it was not inhibited by 1,10-phenanthroline, EDTA or 3,4-dichloroisocoumarin. Western blotting with anti-peptide antibodies to different regions of the α1(II) chain suggested that cathepsin K cleaved native α1(II) chains in the N-terminal region of the helical domain rather than at the well-defined collagenase cleavage site. This was confirmed by N-terminal sequencing of one of the fragments, revealing cleavage at a Gly-Lys bond, 58 residues from the N-terminus of the helical domain. By using a similar approach, cathepsin K was found to cleave native type I collagen close to the N-terminus of its triple helix. These results indicate that cathepsin K could have a role in the turnover of type II collagen, as well as type I collagen.


1980 ◽  
Vol 46 (1) ◽  
pp. 171-186 ◽  
Author(s):  
S.L. Schor ◽  
T.D. Allen ◽  
C.J. Harrison

Three dimensional gels of native type I collagen fibres have been used as a substratum for the growth and migration of Chinese hamster ovary cells (fibroblastoid cell line) and RPMI-3460 melanoma cells (tumorigenic cell line from Syrian hamster). Quantitative data concerning the migration of these cells from the gel surface into the 3-dimensional collagen gel matrix have been obtained. The migration of both cell types into the collagen gel matrix is not accompanied by the degradation of collagen fibres. The possible implications of these observations for tumour cell invasion in vivo are discussed.


Sign in / Sign up

Export Citation Format

Share Document