scholarly journals Population structure of the New Zealand whelk, Cominella glandiformis (Gastropoda: Buccinidae), suggests sporadic dispersal of a direct developer

2020 ◽  
Vol 130 (1) ◽  
pp. 49-60
Author(s):  
Kirsten M Donald ◽  
Graham A McCulloch ◽  
Ludovic Dutoit ◽  
Hamish G Spencer

Abstract We examined phylogeographic structure in the direct-developing New Zealand endemic intertidal mud whelk, Cominella glandiformis. Two hundred and ninety-six whelks from 12 sites were collected from sheltered shores around New Zealand’s four largest islands (North Island, South Island, Stewart Island and Chatham Island), encompassing the geographical range of this species. Despite being direct developers, gene flow among C. glandiformis populations may occur over short distances by adult floating, and over larger distances by rafting of egg masses. Primers were developed to amplify variable microsatellite regions at six loci. All loci were variable, with 8–34 alleles/loci. Observed and expected heterozygosities were high across all alleles, with minimal evidence of null alleles. The average number of alleles varied from 3.5 (Chatham Island) to 7.5 (Waitemata Harbour). Strong genetic structure was evident, with distinct ‘eastern’ and ‘western’ groups. Each group extended over a large geographic area, including regions of unsuitable habitat, but were linked by oceanic currents. We suggest that the intraspecific geographic genetic structure in C. glandiformis has arisen due a combination of ocean currents (promoting gene flow between geographically distant regions) and upwelling areas (limiting gene flow between certain regions).

2021 ◽  
Author(s):  
◽  
Luke Thomas

<p>Understanding patterns of gene flow across a species range is a vital component of an effective fisheries management strategy. The advent of highly polymorphic microsatellite markers has facilitated the detection of fine-scale patterns of genetic differentiation at levels below the resolving power of earlier techniques. This has triggered the wide-spread re-examination of population structure for a number of commercially targeted species. The aims of thesis were to re-investigate patterns of gene flow of the red rock lobster Jasus edwardsii throughout New Zealand and across the Tasman Sea using novel microsatellite markers. Jasus edwardsii is a keystone species of subtidal rocky reef system and supports lucrative export markets in both Australia and New Zealand. Eight highly polymorphic microsatellite markers were developed from 454 sequence data and screened across a Wellington south coast population to obtain basic diversity indices. All loci were polymorphic with the number of alleles per locus ranging from 6-39. Observed and expected heterozygosity ranged from 0.563-0.937 and 0.583-0.961, respectively. There were no significant deviations from Hardy-Weinberg equilibrium following standard Bonferroni corrections. The loci were used in a population analysis of J. edwardsii that spanned 10 degrees of latitude and stretched 3,500 km across the South Pacific. The analysis rejected the null-hypothesis of panmixia based on earlier mDNA analysis and revealed significant population structure (FST=0.011, RST=0.028) at a wide range of scales. Stewart Island was determined to have the highest levels of genetic differentiation of all populations sampled suggesting a high degree of reproductive isolation and self-recruitment. This study also identified high levels of asymmetric gene flow from Australia to New Zealand indicating a historical source-sink relationship between the two countries. Results from the genetic analysis were consistent with results from oceanographic dispersal models and it is likely that the genetic results reflect historical and contemporary patterns of Jasus edwardsii dispersal and recruitment throughout its range.</p>


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240743
Author(s):  
Maurice Marcel Sandeu ◽  
Charles Mulamba ◽  
Gareth D. Weedall ◽  
Charles S. Wondji

Background Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. Methods Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. Results Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. Conclusion The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced.


2021 ◽  
Author(s):  
◽  
Catarina Nunes Soares Silva

<p>Knowledge about the population genetic structure of species and the factors shaping such patterns is crucial for effective management and conservation. The complexity of New Zealand’s marine environment presents a challenge for management and the classification of its marine biogeographic areas. As such, it is an interesting system to investigate marine connectivity dynamics and the evolutionary processes shaping the population structure of marine species. An accurate description of spatial and temporal patterns of dispersal and population structure requires the use of tools capable of incorporating the variability of the mechanisms involved. However, these techniques are yet to be broadly applied to New Zealand marine organisms.  This study used genetic markers to assess the genetic variation of the endemic New Zealand scallop, Pecten novaezelandiae, at different spatial and temporal scales. A multidisciplinary approach was used integrating genetic with environmental data (seascape genetics) and hydrodynamic modelling tools. P. novaezelandiae supports important commercial, recreational and customary fisheries but there is no previous information about its genetic structure. Therefore, twelve microsatellite markers were developed for this study (Chapter 2).  Samples (n=952) were collected from 15 locations to determine the genetic structure across the distribution range of P. novaezelandiae. The low genetic structure detected in this study is expected given the recent evolutionary history, the large reproductive potential and the pelagic larval duration of the species (approximately 3 weeks). A significant isolation by distance signal and a degree of differentiation from north to south was apparent, but this structure conflicted with some evidence of panmixia. A latitudinal genetic diversity gradient was observed that might reflect the colonisation and extinction events and insufficient time to reach migration-drift equilibrium during a recent range expansion (Chapter 3).  A seascape genetic approach was used to test for associations between patterns of genetic variation in P. novaezelandiae and environmental variables (three geospatial and six environmental variables). Although the geographic distance between populations was an important variable explaining the genetic variation among populations, it appears that levels of genetic differentiation are not a simple function of distance. Evidence suggests that some environmental factors such as freshwater discharge and suspended particulate matter can be contributing to the patterns of genetic differentiation of P. novaezelandiae in New Zealand (Chapter 4).  Dispersal of P. novaezelandiae was investigated at a small spatial and temporal scale in the Coromandel fishery using genetic markers integrated with hydrodynamic modelling. For the spatial analysis, samples (n=402) were collected in 2012 from 5 locations and for the temporal analysis samples (n=383) were collected in 2012 and 2014 from 3 locations. Results showed small but significant spatial and temporal genetic differentiation, suggesting that the Coromandel fishery does not form a single panmictic unit with free gene flow and supporting a model of source-sink population dynamics (Chapter 5).  The importance of using multidisciplinary approaches at different spatial and temporal scales is widely recognized as a means to better understand the complex processes affecting marine connectivity. The outcomes of this study highlight the importance of incorporating these different approaches, provide vital information to assist in effective management and conservation of P. novaezelandiae and contribute to our understanding of evolutionary processes shaping population structure of marine species.</p>


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1759
Author(s):  
Jose L. Horreo ◽  
Rainer Raab ◽  
Péter Spakovszky ◽  
Juan Carlos Alonso

The genetic diversity, population structure and gene flow of the Great Bustards (Otis tarda) living in Austria-Slovakia-West Hungary (West-Pannonian region), one of the few populations of this globally threatened species that survives across the Palaearctic, has been assessed for the first time in this study. Fourteen recently developed microsatellite loci identified one single population in the study area, with high values of genetic diversity and gene flow between two different genetic subunits. One of these subunits (Heideboden) was recognized as a priority for conservation, as it could be crucial to maintain connectivity with the central Hungarian population and thus contribute to keeping contemporary genetic diversity. Current conservation efforts have been successful in saving this threatened population from extinction two decades ago, and should continue to guarantee its future survival.


2021 ◽  
Author(s):  
◽  
Catarina Nunes Soares Silva

<p>Knowledge about the population genetic structure of species and the factors shaping such patterns is crucial for effective management and conservation. The complexity of New Zealand’s marine environment presents a challenge for management and the classification of its marine biogeographic areas. As such, it is an interesting system to investigate marine connectivity dynamics and the evolutionary processes shaping the population structure of marine species. An accurate description of spatial and temporal patterns of dispersal and population structure requires the use of tools capable of incorporating the variability of the mechanisms involved. However, these techniques are yet to be broadly applied to New Zealand marine organisms.  This study used genetic markers to assess the genetic variation of the endemic New Zealand scallop, Pecten novaezelandiae, at different spatial and temporal scales. A multidisciplinary approach was used integrating genetic with environmental data (seascape genetics) and hydrodynamic modelling tools. P. novaezelandiae supports important commercial, recreational and customary fisheries but there is no previous information about its genetic structure. Therefore, twelve microsatellite markers were developed for this study (Chapter 2).  Samples (n=952) were collected from 15 locations to determine the genetic structure across the distribution range of P. novaezelandiae. The low genetic structure detected in this study is expected given the recent evolutionary history, the large reproductive potential and the pelagic larval duration of the species (approximately 3 weeks). A significant isolation by distance signal and a degree of differentiation from north to south was apparent, but this structure conflicted with some evidence of panmixia. A latitudinal genetic diversity gradient was observed that might reflect the colonisation and extinction events and insufficient time to reach migration-drift equilibrium during a recent range expansion (Chapter 3).  A seascape genetic approach was used to test for associations between patterns of genetic variation in P. novaezelandiae and environmental variables (three geospatial and six environmental variables). Although the geographic distance between populations was an important variable explaining the genetic variation among populations, it appears that levels of genetic differentiation are not a simple function of distance. Evidence suggests that some environmental factors such as freshwater discharge and suspended particulate matter can be contributing to the patterns of genetic differentiation of P. novaezelandiae in New Zealand (Chapter 4).  Dispersal of P. novaezelandiae was investigated at a small spatial and temporal scale in the Coromandel fishery using genetic markers integrated with hydrodynamic modelling. For the spatial analysis, samples (n=402) were collected in 2012 from 5 locations and for the temporal analysis samples (n=383) were collected in 2012 and 2014 from 3 locations. Results showed small but significant spatial and temporal genetic differentiation, suggesting that the Coromandel fishery does not form a single panmictic unit with free gene flow and supporting a model of source-sink population dynamics (Chapter 5).  The importance of using multidisciplinary approaches at different spatial and temporal scales is widely recognized as a means to better understand the complex processes affecting marine connectivity. The outcomes of this study highlight the importance of incorporating these different approaches, provide vital information to assist in effective management and conservation of P. novaezelandiae and contribute to our understanding of evolutionary processes shaping population structure of marine species.</p>


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4654 ◽  
Author(s):  
Md Rakeb-Ul Islam ◽  
Daniel J. Schmidt ◽  
David A. Crook ◽  
Jane M. Hughes

Freshwater fishes often exhibit high genetic population structure due to the prevalence of dispersal barriers (e.g., waterfalls) whereas population structure in diadromous fishes tends to be weaker and driven by natal homing behaviour and/or isolation by distance. The Australian smelt (Retropinnidae:Retropinna semoni) is a native fish with a broad distribution spanning inland and coastal drainages of south-eastern Australia. Previous studies have demonstrated variability in population genetic structure and movement behaviour (potamodromy, facultative diadromy, estuarine residence) across the southern part of its geographic range. Some of this variability may be explained by the existence of multiple cryptic species. Here, we examined genetic structure of populations towards the northern extent of the species’ distribution, using ten microsatellite loci and sequences of the mitochondrial cytbgene. We tested the hypothesis that genetic connectivity among rivers should be low due to a lack of dispersal via the marine environment, but high within rivers due to dispersal. We investigated populations corresponding with two putative cryptic species, SEQ-North (SEQ-N), and SEQ-South (SEQ-S) lineages occurring in south east Queensland drainages. These two groups formed monophyletic clades in the mtDNA gene tree and among river phylogeographic structure was also evident within each clade. In agreement with our hypothesis, highly significant overallFSTvalues suggested that both groups exhibit very low dispersal among rivers (SEQ-SFST= 0.13; SEQ-NFST= 0.27). Microsatellite data indicated that connectivity among sites within rivers was also limited, suggesting dispersal may not homogenise populations at the within-river scale. Northern groups in the Australian smelt cryptic species complex exhibit comparatively higher among-river population structure and smaller geographic ranges than southern groups. These properties make northern Australian smelt populations potentially susceptible to future conservation threats, and we define eight genetically distinct management units along south east Queensland to guide future conservation management. The present findings at least can assist managers to plan for effective conservation and management of different fish species along coastal drainages of south east Queensland, Australia.


2019 ◽  
Vol 109 (3) ◽  
pp. 446-455 ◽  
Author(s):  
P. I. Bennett ◽  
I. A. Hood ◽  
J. K. Stone

Swiss needle cast is a foliar disease of Douglas-fir (Pseudotsuga menziesii) that results in premature foliage loss and reduced growth. The causal fungus, Nothophaeocryptopus gaeumannii, was first detected in New Zealand in 1959 and spread throughout the North and South Islands over the following decades. The contemporary genetic structure of the N. gaeumannii population in New Zealand was assessed by analyzing 468 multilocus SSR genotypes (MLGs) from 2,085 N. gaeumannii isolates collected from 32 sites in the North and South Islands. Overall diversity was lower than that reported from native N. gaeumannii populations in the northwestern United States, which was expected given that N. gaeumannii is introduced in New Zealand. Linkage disequilibrium was significantly higher than expected under random mating, suggesting that population structure is clonal. Populations of N. gaeumannii in the North and South Islands were weakly differentiated, and the isolates collected from sites within the islands were moderately differentiated. This suggests that gene flow has occurred between the N. gaeumannii populations in the North and South Islands, and between the local N. gaeumannii populations within each island. Eighteen isolates of N. gaeumannii Lineage 2, which has previously been reported only from western Oregon, were recovered from two sites in the North Island and four sites in the South Island. The most likely explanation for the contemporary distribution of N. gaeumannii in New Zealand is that it was introduced on infected live seedlings through the forestry or ornamental nursery trade, as the fungus is neither seed borne nor saprobic, and the observed population structure is not consistent with a stochastic intercontinental dispersal event.


2000 ◽  
Vol 78 (7) ◽  
pp. 1150-1157 ◽  
Author(s):  
C J Kyle ◽  
C S Davis ◽  
C Strobeck

Elucidating the population genetic structure of a species gives us insight into the levels of gene flow between geographic regions. Such data may have important implications for those trying to manage a heavily harvested wildlife species by determining the genetic connectivity of adjacent populations. In this study, the population structure of 12 North American pine marten (Martes americana) populations from the Yukon through to the central Northwest Territories was investigated using 11 microsatellite loci. Genetic variation within populations across the entire geographic range was relatively homogeneous as measured by: mean number of alleles (5.89 ± 0.45) and the average unbiased expected heterozygosity (He) (65.6 ± 1.7%). The overall unbiased probability of identity showed more variance between populations (1/10.25 ± 7.84 billion) than did the mean number of alleles and the He estimates. Although some population structure was found among the populations, most regions were not strongly differentiated from one another. The low level of structure among the populations can, in part, be attributed to isolation by distance rather than to population fragmentation, as would be expected in more southerly regions in which suitable habitat is more disjunct. Furthermore, the low levels of population genetic structure were likely due to high levels of gene flow between regions and to large effective marten populations in the northern part of their distribution.


Nematology ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Jessica A. Hartshorn ◽  
J. Ray Fisher ◽  
John J. Riggins ◽  
Fred M. Stephen

Parasitic nematodes were isolated from Sirex nigricornis (Hymenoptera: Siricidae) females collected in baited traps across pine forests of Arkansas and Mississippi, USA. We examined 650-720 bp of cytochrome c oxidase subunit I and compared Arkansas and Mississippi sequences to sequences from nematodes collected in Illinois, Louisiana and New York that were positively identified as Deladenus proximus. We propose that a single species, D. proximus, occurs across Arkansas and Mississippi. Moreover, all sequences, which spanned a large geographic area (Louisiana to New York), exhibited only minor genetic variation (mean genetic distance of 0.004). This suggests that all examined specimens are a single species and could suggest continuous gene flow across eastern North America. Additional genes should be examined to discuss more fully the prospect of continuous gene flow.


2021 ◽  
Author(s):  
◽  
Luke Thomas

<p>Understanding patterns of gene flow across a species range is a vital component of an effective fisheries management strategy. The advent of highly polymorphic microsatellite markers has facilitated the detection of fine-scale patterns of genetic differentiation at levels below the resolving power of earlier techniques. This has triggered the wide-spread re-examination of population structure for a number of commercially targeted species. The aims of thesis were to re-investigate patterns of gene flow of the red rock lobster Jasus edwardsii throughout New Zealand and across the Tasman Sea using novel microsatellite markers. Jasus edwardsii is a keystone species of subtidal rocky reef system and supports lucrative export markets in both Australia and New Zealand. Eight highly polymorphic microsatellite markers were developed from 454 sequence data and screened across a Wellington south coast population to obtain basic diversity indices. All loci were polymorphic with the number of alleles per locus ranging from 6-39. Observed and expected heterozygosity ranged from 0.563-0.937 and 0.583-0.961, respectively. There were no significant deviations from Hardy-Weinberg equilibrium following standard Bonferroni corrections. The loci were used in a population analysis of J. edwardsii that spanned 10 degrees of latitude and stretched 3,500 km across the South Pacific. The analysis rejected the null-hypothesis of panmixia based on earlier mDNA analysis and revealed significant population structure (FST=0.011, RST=0.028) at a wide range of scales. Stewart Island was determined to have the highest levels of genetic differentiation of all populations sampled suggesting a high degree of reproductive isolation and self-recruitment. This study also identified high levels of asymmetric gene flow from Australia to New Zealand indicating a historical source-sink relationship between the two countries. Results from the genetic analysis were consistent with results from oceanographic dispersal models and it is likely that the genetic results reflect historical and contemporary patterns of Jasus edwardsii dispersal and recruitment throughout its range.</p>


Sign in / Sign up

Export Citation Format

Share Document