Prolonging photoperiod promotes testosterone synthesis of Leydig cells by directly targeting local melatonin system in rooster testes

Author(s):  
Gaoqing Xu ◽  
Zhiyu Yuan ◽  
Jiani Hou ◽  
Jing Zhao ◽  
Hongyu Liu ◽  
...  

Abstract The study investigated the effects of prolonging photoperiod on the synthesis of testosterone and melatonin in roosters, and the effect of melatonin on testosterone synthesis in rooster Leydig cells as well as its molecular mechanisms. We randomly divided one hundred and twenty 20-week-old roosters into three groups and provided 6, 12.5 and 16 h light, respectively. The results showed that prolonging photoperiod promoted testosterone synthesis, decreased melatonin production, and inhibited the expression of melatonin membrane receptors MEL1A, MEL1B, MEL1C, and aralkylamine N-acetyltransferase (AANAT) in rooster testes. Subsequently, rooster Leydig cells were isolated and treated with 0, 0.1, 1, 10, and 100 ng/mL melatonin for 36 h. The results suggested that melatonin inhibited testosterone synthesis in rooster Leydig cells, and silencing MEL1A and MEL1B relieved the inhibition of melatonin on testosterone synthesis. Additionally, melatonin reduced the intracellular cyclic adenosine monophosphate (cAMP) level and the phosphorylation level of cAMP-response element binding protein (CREB), and CREB overexpression alleviated the inhibition of melatonin on testosterone synthesis. Furthermore, pretreatment with cAMP activator forskolin or protein kinase A (PKA) activator 8-bromo-cAMP blocked the inhibition of melatonin on CREB phosphorylation and testosterone synthesis. These results indicated that prolonging photoperiod promoted testosterone synthesis associated with the decrease in melatonin production and membrane receptors and biosynthetic enzyme of melatonin in rooster testes, and melatonin inhibited testosterone synthesis of rooster Leydig cells by inhibiting the cAMP/PKA/CREB pathway via MEL1A and MEL1B. This may be evidence that prolonging photoperiod could promote testosterone synthesis through the inhibition of the local melatonin pathway in rooster testes.

Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Michael P. Scheid ◽  
Ian N. Foltz ◽  
Peter R. Young ◽  
John W. Schrader ◽  
Vincent Duronio

Abstract The role of ceramide as a second messenger is a subject of great interest, particularly since it is implicated in signaling in response to inflammatory cytokines. Ceramide induces apoptosis in both cytokine-dependent MC/9 cells and factor-independent U937 cells. Elevation of cyclic adenosine monophosphate (cAMP) levels inhibits apoptosis induced by ceramide and several other treatments. One target of cAMP-mediated signaling is the transcription factor CREB (cAMP response element binding protein), and recently CREB phosphorylation at an activating site has been shown to also be mediated by a cascade involving p38 mitogen-activated protein kinase (MAPK), one of the stress-activated MAP kinases. Because no role for p38 MAPK in apoptosis has been firmly established, we examined the relationship between p38 MAPK and CREB phosphorylation under various conditions. Ceramide, or sphingomyelinase, like tumor necrosis factor- (TNF-) or the hematopoietic growth factor, interleukin-3 (IL-3), was shown to activate p38 MAPK, which in turn activated MAPKAP kinase-2. Each of these treatments led to phosphorylation of CREB (and the related factor ATF-1). A selective p38 MAPK inhibitor, SB203580, blocked TNF-– or ceramide-induced CREB phosphorylation, but had no effect on the induction of apoptosis mediated by these agents. The protective agents cAMP and IL-3 also led to CREB phosphorylation, but this effect was independent of p38 MAPK, even though IL-3 was shown to activate both p38 MAPK and MAPKAP kinase-2. Therefore, the opposing effects on apoptosis observed with cAMP and IL-3, compared with ceramide and TNF-, could not be explained on the basis of phosphorylation of CREB. In addition, because SB203580 had no effect of TNF- or ceramide-induced apoptosis, our results strongly argue against a role for p38 MAPK in the induction of TNF-– or ceramide-induced apoptosis.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Michael P. Scheid ◽  
Ian N. Foltz ◽  
Peter R. Young ◽  
John W. Schrader ◽  
Vincent Duronio

The role of ceramide as a second messenger is a subject of great interest, particularly since it is implicated in signaling in response to inflammatory cytokines. Ceramide induces apoptosis in both cytokine-dependent MC/9 cells and factor-independent U937 cells. Elevation of cyclic adenosine monophosphate (cAMP) levels inhibits apoptosis induced by ceramide and several other treatments. One target of cAMP-mediated signaling is the transcription factor CREB (cAMP response element binding protein), and recently CREB phosphorylation at an activating site has been shown to also be mediated by a cascade involving p38 mitogen-activated protein kinase (MAPK), one of the stress-activated MAP kinases. Because no role for p38 MAPK in apoptosis has been firmly established, we examined the relationship between p38 MAPK and CREB phosphorylation under various conditions. Ceramide, or sphingomyelinase, like tumor necrosis factor- (TNF-) or the hematopoietic growth factor, interleukin-3 (IL-3), was shown to activate p38 MAPK, which in turn activated MAPKAP kinase-2. Each of these treatments led to phosphorylation of CREB (and the related factor ATF-1). A selective p38 MAPK inhibitor, SB203580, blocked TNF-– or ceramide-induced CREB phosphorylation, but had no effect on the induction of apoptosis mediated by these agents. The protective agents cAMP and IL-3 also led to CREB phosphorylation, but this effect was independent of p38 MAPK, even though IL-3 was shown to activate both p38 MAPK and MAPKAP kinase-2. Therefore, the opposing effects on apoptosis observed with cAMP and IL-3, compared with ceramide and TNF-, could not be explained on the basis of phosphorylation of CREB. In addition, because SB203580 had no effect of TNF- or ceramide-induced apoptosis, our results strongly argue against a role for p38 MAPK in the induction of TNF-– or ceramide-induced apoptosis.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Kai Zhang ◽  
Dianming Jiang

Chondrocytes that are embedded within the growth plate or the intervertebral disc are sensitive to environmental stresses, such as inflammation and hypoxia. However, little is known about the molecular signalling pathways underlining the hypoxia-induced mitochondrial dysfunction and apoptosis in chondrocytes. In the present study, we firstly examined the hypoxia-induced apoptosis, mitochondrial dysfunction and the activation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signalling in human chondrocyte cell line, C28/I2 and then investigated the regulatory role of RhoA, a well-recognized apoptosis suppressor, in such process, with gain-of-function strategy. Our results indicated that hypoxia induced apoptosis and inhibited CREB phosphprylation in chondrocytes, meanwhile, the dysfunctional mitochondria with up-regulated mitochondrial superoxide and reactive oxygen species (ROS) levels, whereas with a reduced mitochondrial membrane potential (MMP) and Complex IV activity were observed in the hypoxia-treated C28/I2 cells. However, the overexpressed RhoA blocked the hypoxia-mediated reduction in CREB phosphprylation and inhibited the apoptosis induction, along with an ameliorated mitochondrial function in the hypoxia-treated C28/I2 cells. In conclusion, the present study confirmed the reduced CREB phosphorylation, along with the apoptosis induction and mitochondrial dysfunction in the hypoxia-treated chondrocyte cells. And the overexpression of RhoA ameliorated the hypoxia-induced mitochondrial dysfunction and apoptosis via blocking the hypoxia-mediated reduction in CREB phosphorylation.


SLEEP ◽  
2020 ◽  
Author(s):  
Mathieu E Wimmer ◽  
Rosa Cui ◽  
Jennifer M Blackwell ◽  
Ted Abel

Abstract The molecular and intracellular signaling processes that control sleep and wake states remain largely unknown. A consistent observation is that the cyclic adenosine monophosphate (AMP) response element-binding protein (CREB), an activity-dependent transcription factor, is differentially activated during sleep and wakefulness. CREB is phosphorylated by the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway as well as other kinases, and phosphorylated CREB promotes the transcription of target genes. Genetic studies in flies and mice suggest that CREB signaling influences sleep/wake states by promoting and stabilizing wakefulness. However, it remains unclear where in the brain CREB is required to drive wakefulness. In rats, CREB phosphorylation increases in the cerebral cortex during wakefulness and decreases during sleep, but it is not known if this change is functionally relevant to the maintenance of wakefulness. Here, we used the Cre/lox system to conditionally delete CREB in the forebrain (FB) and in the locus coeruleus (LC), two regions known to be important for the production of arousal and wakefulness. We used polysomnography to measure sleep/wake levels and sleep architecture in conditional CREB mutant mice and control littermates. We found that FB-specific deletion of CREB decreased wakefulness and increased non-rapid eye movement sleep. Mice lacking CREB in the FB were unable to sustain normal periods of wakefulness. On the other hand, deletion of CREB from LC neurons did not change sleep/wake levels or sleep/wake architecture. Taken together, these results suggest that CREB is required in neurons within the FB but not in the LC to promote and stabilize wakefulness.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Du ◽  
Yun Le ◽  
Fenyong Sun ◽  
Kai Li ◽  
Yanfeng Xu

Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is overexpressed and has an oncogenic role in hepatocellular carcinoma (HCC). Interleukin enhancer binding factor 2 (ILF2) has become research hotspot in liver cancer recently. However, it is still unclear whether and how CREB and ILF2 interact with each other. And how this interaction exerts its role in occurrence and development of liver cancer is still unclear. Here, we found that ILF2 directly bound with CREB, and this binding was essential for the malignant phenotypes of liver cancer cells. Moreover, we found that ILF2 acted as one of the upstream proteins of CREB and promoted CREB only in the protein level, whereas ILF2 expression was not regulated by CREB. Mechanistically, ILF2 bound to the pKID domain of CREB and stimulated its phosphorylation at Ser133. Taken together, our study finds a novel interaction between CREB and ILF2 in liver cancer, and this interaction might play a role in the diagnosis and remedy of liver cancer.


2020 ◽  
Vol 21 (22) ◽  
pp. 8796
Author(s):  
Myoung Eun Choi ◽  
Hanju Yoo ◽  
Ha-Ri Lee ◽  
Ik Joon Moon ◽  
Woo Jin Lee ◽  
...  

Catecholamines function via G protein-coupled receptors, triggering an increase in intracellular levels of 3′,5′-cyclic adenosine monophosphate (cAMP) in various cells. Catecholamine biosynthesis and the β-adrenergic receptor exist in melanocytes; thus, catecholamines may play critical roles in skin pigmentation. However, their action and mechanisms mediating melanogenesis in human skin have not yet been investigated. Therefore, we examined the potential anti-melanogenetic effect of carvedilol, a nonselective β-blocker with weak α1-blocking activities. Carvedilol reduced melanin content and cellular tyrosinase activity without compromising cellular viability in normal human melanocytes as well as in mel-Ab immortalized mouse melanocytes. Carvedilol downregulated microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Carvedilol treatment led to the downregulation of phosphor-cAMP response element-binding protein (CREB). Moreover, the increase in cAMP levels upon treatment with forskolin reversed the anti-melanogenic action of carvedilol. In addition, carvedilol remarkably reduced the melanin index in ultraviolet-irradiated human skin cultures. Taken together, our results indicate that carvedilol effectively suppresses melanogenesis in human melanocytes and ex vivo human skin by inhibiting cAMP/protein kinase A/CREB signaling. The anti-melanogenic effects of carvedilol have potential significance for skin whitening agents.


Endocrinology ◽  
2017 ◽  
Vol 159 (1) ◽  
pp. 206-216 ◽  
Author(s):  
Ido Goldstein ◽  
Gordon L Hager

Abstract Upon lowered blood glucose occurring during fasting, glucagon is secreted from pancreatic islets, exerting various metabolic effects to normalize glucose levels. A considerable portion of these effects is mediated by glucagon-activated transcription factors (TFs) in liver. Glucagon directly activates several TFs via immediate cyclic adenosine monophosphate (cAMP)– and calcium-dependent signaling events. Among these TFs, cAMP response element-binding protein (CREB) is a major factor. CREB recruits histone-modifying enzymes and cooperates with other TFs on the chromatin template to increase the rate of gene transcription. In addition to direct signal transduction, the transcriptional effects of glucagon are also influenced by dynamic TF cross talk. Specifically, assisted loading of one TF by a companion TF leads to increased binding and activity. Lastly, transcriptional regulation by glucagon is also exerted by TF cascades by which a primary TF induces the gene expression of secondary TFs that bring about their activity a few hours after the initial glucagon signal. This mechanism of a delayed response may be instrumental in establishing the temporal organization of the fasting response by which distinct metabolic events separate early from prolonged fasting. In this mini-review, we summarize recent advances and critical discoveries in glucagon-dependent gene regulation with a focus on direct TF activation, dynamic TF cross talk, and TF cascades.


Sign in / Sign up

Export Citation Format

Share Document