scholarly journals Association of Habitual Coffee Consumption and HECTD4 Polymorphism with Risk of Prediabetes and Type 2 Diabetes (P18-071-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Taiyue Jin ◽  
Jiyoung Youn ◽  
Moonil Kang ◽  
Joohon Sung ◽  
Jung Eun Lee ◽  
...  

Abstract Objectives Epidemiological studies suggested the evidence that coffee consumption decreased risk of type 2 diabetes. Recently, Japanese genome-wide association studies (GWAS) of coffee consumption has identified rs2074356 (G > A) at 12q24.12–13 in HECTD4. This study aims to examine the associations of habitual coffee consumption with prediabetes and type 2 diabetes, and whether this association is modified by rs2074356 variant in Korean adults. Methods A total of 4010 participants (1890 men and 2120 women) who had genetic information from Korea Association REsource (KARE) study were included. Habitual coffee consumption was assessed through a food frequency questionnaire and categorized into five categories (non-consumers, <1 cup/day and ≥1 cups/day of black coffee, and <1 cup/day and ≥1 cups/day of sugared coffee). Incident prediabetes or type 2 diabetes were defined according to the self-report of physician-diagnosis, oral glucose tolerance test (OGTT) or hemoglobin A1c (HbA1c) test. Multivariable logistic regression models were used to calculate odds ratio (OR)s and 95% confidence interval (CI)s. Results A total of 2916 participants (72.7%) have developed prediabetes during a follow-up of 15 years. We found that black coffee consumption lowered risk of prediabetes and type 2 diabetes combined among men and women combined (OR = 0.63; 95% CI = 0.44–0.91 for ≥1 cups/day black coffee vs. non-consumers). When we separated men and women, compared with non-consumers, ORs (95% CIs) for ≥1 cups/day of black coffee were 0.50 (0.27–0.93) among men and 0.72 (0.45–1.14) among women and ORs (95% CIs) for ≥1 cups/day of sugared coffee were 1.41 (0.91–2.18) among men and 1.12 (0.80–1.58) among women. We observed a suggestive difference by rs2074356 (GG vs. AG + AA). Compared with non-consumers, participants with AG + AA genotypes consumed ≥ 1 cups/day of black coffee had a 60% lower risk of prediabetes and type 2 diabetes combined (95% CI 0.20–0.78), but we found a weaker association among those with GG genotype (OR = 0.81; 95% CI = 0.51–1.28). Conclusions We observed an inverse association between black coffee consumption and prediabetes and type 2 diabetes combined in Korean population. This association was more pronounced among carriers of minor allele of HECTD4 rs2074356 (AG/AA). Funding Sources None.

BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiu Lun Au Yeung ◽  
Jie V Zhao ◽  
C Mary Schooling

Abstract Background Observational studies suggest poorer glycemic traits and type 2 diabetes associated with coronavirus disease 2019 (COVID-19) risk although these findings could be confounded by socioeconomic position. We conducted a two-sample Mendelian randomization to clarify their role in COVID-19 risk and specific COVID-19 phenotypes (hospitalized and severe cases). Method We identified genetic instruments for fasting glucose (n = 133,010), 2 h glucose (n = 42,854), glycated hemoglobin (n = 123,665), and type 2 diabetes (74,124 cases and 824,006 controls) from genome wide association studies and applied them to COVID-19 Host Genetics Initiative summary statistics (17,965 COVID-19 cases and 1,370,547 population controls). We used inverse variance weighting to obtain the causal estimates of glycemic traits and genetic predisposition to type 2 diabetes in COVID-19 risk. Sensitivity analyses included MR-Egger and weighted median method. Results We found genetic predisposition to type 2 diabetes was not associated with any COVID-19 phenotype (OR: 1.00 per unit increase in log odds of having diabetes, 95%CI 0.97 to 1.04 for overall COVID-19; OR: 1.02, 95%CI 0.95 to 1.09 for hospitalized COVID-19; and OR: 1.00, 95%CI 0.93 to 1.08 for severe COVID-19). There were no strong evidence for an association of glycemic traits in COVID-19 phenotypes, apart from a potential inverse association for fasting glucose albeit with wide confidence interval. Conclusion We provide some genetic evidence that poorer glycemic traits and predisposition to type 2 diabetes unlikely increase the risk of COVID-19. Although our study did not indicate glycemic traits increase severity of COVID-19, additional studies are needed to verify our findings.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3890
Author(s):  
Susanne Jäger ◽  
Rafael Cuadrat ◽  
Clemens Wittenbecher ◽  
Anna Floegel ◽  
Per Hoffmann ◽  
...  

Circulating levels of branched-chain amino acids, glycine, or aromatic amino acids have been associated with risk of type 2 diabetes. However, whether those associations reflect causal relationships or are rather driven by early processes of disease development is unclear. We selected diabetes-related amino acid ratios based on metabolic network structures and investigated causal effects of these ratios and single amino acids on the risk of type 2 diabetes in two-sample Mendelian randomization studies. Selection of genetic instruments for amino acid traits relied on genome-wide association studies in a representative sub-cohort (up to 2265 participants) of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study and public data from genome-wide association studies on single amino acids. For the selected instruments, outcome associations were drawn from the DIAGRAM (DIAbetes Genetics Replication And Meta-analysis, 74,124 cases and 824,006 controls) consortium. Mendelian randomization results indicate an inverse association for a per standard deviation increase in ln-transformed tyrosine/methionine ratio with type 2 diabetes (OR = 0.87 (0.81–0.93)). Multivariable Mendelian randomization revealed inverse association for higher log10-transformed tyrosine levels with type 2 diabetes (OR = 0.19 (0.04–0.88)), independent of other amino acids. Tyrosine might be a causal trait for type 2 diabetes independent of other diabetes-associated amino acids.


2019 ◽  
Vol 18 (3) ◽  
pp. 247-255
Author(s):  
Sierra-Puente D. ◽  
Abadi-Alfie S. ◽  
Arakanchi-Altaled K. ◽  
Bogard-Brondo M. ◽  
García-Lascurain M. ◽  
...  

Spices such as cinnamon (Cinnamomum Spp.) have been of interest due to their phytochemical composition that exert hypoglycemic effects with potential for management of type 2 diabetes mellitus (T2DM). We summarize data from 27 manuscripts that include, one book chapter, 3 review articles, 10 randomized controlled trials, 4 systematic reviews with meta-analysis, and 9 preclinical studies. The most frequently used cinnamon variety was Cinnamomum cassia rather than the Cinnamomum zeylanicum, whereas outcomes were defined as fasting blood glucose, glycated hemoglobin, and oral glucose tolerance test. A great variability in methodology such as different doses (from 120 mg to 6 g), duration of intervention, data retrieved and use of different concomitant medication, were found to be key aspects of most of trials and systematic reviews with meta-analysis available to date. Low quality studies have been made in most cases with a lot of heterogeneity clouding significance of results. More research needs to be done in order to yield accurate evidence for evidence-based recommendations. Its use is not currently a reliable nor advisable option for the treatment of T2DM.


2021 ◽  
Author(s):  
Minako Imamura ◽  
Atsushi Takahashi ◽  
Masatoshi Matsunami ◽  
Momoko Horikoshi ◽  
Minoru Iwata ◽  
...  

Abstract Several reports have suggested that genetic susceptibility contributes to the development and progression of diabetic retinopathy. We aimed to identify genetic loci that confer susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. We analysed 5 790 508 single nucleotide polymorphisms (SNPs) in 8880 Japanese patients with type 2 diabetes, 4839 retinopathy cases and 4041 controls, as well as 2217 independent Japanese patients with type 2 diabetes, 693 retinopathy cases, and 1524 controls. The results of these two genome-wide association studies (GWAS) were combined with an inverse variance meta-analysis (Stage-1), followed by de novo genotyping for the candidate SNP loci (p &lt; 1.0 × 10−4) in an independent case–control study (Stage-2, 2260 cases and 723 controls). After combining the association data (Stage-1 and -2) using meta-analysis, the associations of two loci reached a genome-wide significance level: rs12630354 near STT3B on chromosome 3, p = 1.62 × 10−9, odds ratio (OR) = 1.17, 95% confidence interval (CI) 1.11–1.23, and rs140508424 within PALM2 on chromosome 9, p = 4.19 × 10−8, OR = 1.61, 95% CI 1.36–1.91. However, the association of these two loci were not replicated in Korean, European, or African American populations. Gene-based analysis using Stage-1 GWAS data identified a gene-level association of EHD3 with susceptibility to diabetic retinopathy (p = 2.17 × 10−6). In conclusion, we identified two novel SNP loci, STT3B and PALM2, and a novel gene, EHD3, that confers susceptibility to diabetic retinopathy; however, further replication studies are required to validate these associations.


Author(s):  
Guanghao Qi ◽  
Nilanjan Chatterjee

Abstract Background Previous studies have often evaluated methods for Mendelian randomization (MR) analysis based on simulations that do not adequately reflect the data-generating mechanisms in genome-wide association studies (GWAS) and there are often discrepancies in the performance of MR methods in simulations and real data sets. Methods We use a simulation framework that generates data on full GWAS for two traits under a realistic model for effect-size distribution coherent with the heritability, co-heritability and polygenicity typically observed for complex traits. We further use recent data generated from GWAS of 38 biomarkers in the UK Biobank and performed down sampling to investigate trends in estimates of causal effects of these biomarkers on the risk of type 2 diabetes (T2D). Results Simulation studies show that weighted mode and MRMix are the only two methods that maintain the correct type I error rate in a diverse set of scenarios. Between the two methods, MRMix tends to be more powerful for larger GWAS whereas the opposite is true for smaller sample sizes. Among the other methods, random-effect IVW (inverse-variance weighted method), MR-Robust and MR-RAPS (robust adjust profile score) tend to perform best in maintaining a low mean-squared error when the InSIDE assumption is satisfied, but can produce large bias when InSIDE is violated. In real-data analysis, some biomarkers showed major heterogeneity in estimates of their causal effects on the risk of T2D across the different methods and estimates from many methods trended in one direction with increasing sample size with patterns similar to those observed in simulation studies. Conclusion The relative performance of different MR methods depends heavily on the sample sizes of the underlying GWAS, the proportion of valid instruments and the validity of the InSIDE assumption. Down-sampling analysis can be used in large GWAS for the possible detection of bias in the MR methods.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Minako Imamura ◽  
Atsushi Takahashi ◽  
Toshimasa Yamauchi ◽  
Kazuo Hara ◽  
Kazuki Yasuda ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Fangyu Yan ◽  
Ehab S. Eshak ◽  
Kokoro Shirai ◽  
Jia-Yi Dong ◽  
Isao Muraki ◽  
...  

The evidence on the protective effects of soy foods against type 2 diabetes has been inconsistent. We thought to examine the association between the dietary intakes of soy and the risk of diabetes in a prospective study encompassing 21,925 healthy Japanese men and women aged 40–79 years. A validated self-administered food frequency questionnaire determined the intakes of soy, and their associations with risk of type 2 diabetes were evaluated by the logistic regression analysis. During the 5-year follow-up period, we observed 593 new cases of type 2 diabetes (302 in men and 291 in women). There was no association between dietary intakes of soy foods and the risk of type 2 diabetes among men. Whereas among women, higher tofu intake was inversely associated with risk of type 2 diabetes; the multivariable odds ratios (ORs) of type 2 diabetes were 0.92 (95% CI: 0.69–1.21) for 3–4 times per week and 0.67 (95% CI: 0.49–0.94) for almost daily (p-trend = 0.03) in reference to those consuming tofu less than 3 times per week. Intakes of boiled beans and miso soup were not associated with the risk in both genders. The inverse association tended to be more evident among overweight women and postmenopaused women. In conclusion, the frequency of tofu intake was inversely associated with the risk of type 2 diabetes among women.


2021 ◽  
Author(s):  
John T Walker ◽  
Diane C Saunders ◽  
Vivek Rai ◽  
Chunhua Dai ◽  
Peter Orchard ◽  
...  

A hallmark of type 2 diabetes (T2D), a major cause of world-wide morbidity and mortality, is dysfunction of insulin-producing pancreatic islet β cells. T2D genome-wide association studies (GWAS) have identified hundreds of signals, mostly in the non-coding genome and overlapping β cell regulatory elements, but translating these into biological mechanisms has been challenging. To identify early disease-driving events, we performed single cell spatial proteomics, sorted cell transcriptomics, and assessed islet physiology on pancreatic tissue from short-duration T2D and control donors. Here, through integrative analyses of these diverse modalities, we show that multiple gene regulatory modules are associated with early-stage T2D β cell-intrinsic defects. One notable example is the transcription factor RFX6, which we show is a highly connected β cell hub gene that is reduced in T2D and governs a gene regulatory network associated with insulin secretion defects and T2D GWAS variants. We validated the critical role of RFX6 in β cells through direct perturbation in primary human islets followed by physiological and single nucleus multiome profiling, which showed reduced dynamic insulin secretion and large-scale changes in the β cell transcriptome and chromatin accessibility landscape. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs, and individuals and thus we anticipate this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits with GWAS data.


Sign in / Sign up

Export Citation Format

Share Document