scholarly journals Research on a soft-measurement model of gasification temperature based on recurrent neural network

Clean Energy ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 861-868
Author(s):  
Haiquan An ◽  
Xinhui Fang ◽  
Zhen Liu ◽  
Ye Li

Abstract Gasification temperature measurement is one of the most challenging tasks in an entrained-flow gasifier and often requires indirect calculation using the soft-sensor method, a parameter prediction method using other parameters that are more easily measurable and using correlation equations that are widely accepted in the gasification field for the temperature data. Machine learning is a non-linear prediction method that can adequately act as a soft sensor. Furthermore, the recurrent neural network (RNN) has the function of memorization, which makes it capable of learning how to deal with temporal order. In this paper, the oxygen–coal ratio, CH4 content and CO2 content determined through the process analysis of a 3000-t/d coal-water slurry gasifier are used as input parameters for the soft sensor of the gasification temperature. The RNN model and back propagation (BP) neural network model are then established with training-set data from gasification results. Compared with prediction set data from the gasification results, the RNN model is found to be much better than the BP neural network based on important indexes such as the mean square error (MSE), mean absolute error (MAE) and standard deviation (SD). The results show that the MSE of the prediction set of the RNN model is 6.25°C, the MAE is 10.33°C and the SD is 3.88°C, respectively. The overall accuracy, the average accuracy and the stability effects are well within the accepted ranges for the results as such.

2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Guo ◽  
Shu Liu ◽  
Bin Zhang ◽  
Yongming Yan

Cloud application provides access to large pool of virtual machines for building high-quality applications to satisfy customers’ requirements. A difficult issue is how to predict virtual machine response time because it determines when we could adjust dynamic scalable virtual machines. To address the critical issue, this paper proposes a prediction virtual machine response time method which is based on genetic algorithm-back propagation (GA-BP) neural network. First of all, we predict component response time by the past virtual machine component usage experience data: the number of concurrent requests and response time. Then, we could predict virtual machines service response time. The results of large-scale experiments show the effectiveness and feasibility of our method.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1094 ◽  
Author(s):  
Lanjun Wan ◽  
Hongyang Li ◽  
Yiwei Chen ◽  
Changyun Li

To effectively predict the rolling bearing fault under different working conditions, a rolling bearing fault prediction method based on quantum particle swarm optimization (QPSO) backpropagation (BP) neural network and Dempster–Shafer evidence theory is proposed. First, the original vibration signals of rolling bearing are decomposed by three-layer wavelet packet, and the eigenvectors of different states of rolling bearing are constructed as input data of BP neural network. Second, the optimal number of hidden-layer nodes of BP neural network is automatically found by the dichotomy method to improve the efficiency of selecting the number of hidden-layer nodes. Third, the initial weights and thresholds of BP neural network are optimized by QPSO algorithm, which can improve the convergence speed and classification accuracy of BP neural network. Finally, the fault classification results of multiple QPSO-BP neural networks are fused by Dempster–Shafer evidence theory, and the final rolling bearing fault prediction model is obtained. The experiments demonstrate that different types of rolling bearing fault can be effectively and efficiently predicted under various working conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liying Liu

AbstractThis paper presents the assessment of water resource security in the Guizhou karst area, China. A mean impact value and back-propagation (MIV-BP) neural network was used to understand the influencing factors. Thirty-one indices involving five aspects, the water quality subsystem, water quantity subsystem, engineering water shortage subsystem, water resource vulnerability subsystem, and water resource carrying capacity subsystem, were selected to establish an evaluation index of water resource security. In addition, a genetic algorithm and back-propagation (GA-BP) neural network was constructed to assess the water resource security of Guizhou Province from 2001 to 2015. The results show that water resource security in Guizhou was at a moderate warning level from 2001 to 2006 and a critical safety level from 2007 to 2015, except in 2011 when a moderate warning level was reached. For protection and management of water resources in a karst area, the modes of development and utilization of water resources must be thoroughly understood, along with the impact of engineering water shortage. These results are a meaningful contribution to regional ecological restoration and socio-economic development and can promote better practices for future planning.


Author(s):  
Lizhi Gu ◽  
Tianqing Zheng

Precision improvement in sheet metal stamping has been the concern that the stamping researchers have engaged in. In order to improve the forming precision of sheet metal in stamping, this paper devoted to establish the generalized holo-factors mathematical model of dimension-error and shape-error for sheet metal in stamping based on BP neural network. Factors influencing the forming precision of stamping sheet metal were divided, altogether ten factors, and the generalized holo-factors mathematical model of dimension-error and shape-error for sheet metal in stamping was established using the back-propagation algorithm of error based on BP neural network. The undetermined coefficients of the model previously established were soluble according to the simulation data of sheet punching combined with the specific shape based on the BP neural network. With this mathematical model, the forecast data compared with the validate data could be obtained, so as to verify the fine practicability that the previously established mathematical model had, and then, it was shown that the generalized holo-factors mathematical model of size error and shape-error had fine practicality and versatility. Based on the generalized holo-factors mathematical model of error exemplified by the cylindrical parts, a group of process parameters could be selected, in which forming thickness was between 0.713 mm and 1.335 mm, major strain was between 0.085 and 0.519, and minor strain was between −0.596 and 0.319 from the generalized holo-factors mathematical model prediction, at the same time, the forming thickness, the major strain, and the minor strain were in good condition.


2010 ◽  
Vol 29-32 ◽  
pp. 1543-1549 ◽  
Author(s):  
Jie Wei ◽  
Hong Yu ◽  
Jin Li

Three-ratio of the IEC is a convenient and effective approach for transformer fault diagnosis in the dissolved gas analysis (DGA). Fuzzy theory is used to preprocess the three-ratio for its boundary that is too absolute. As the same time, an improved quantum genetic algorithm IQGA (QGASAC) is used to optimize the weight and threshold of the back propagation (BP). The local and global searching ability of the QGASAC approach is utilized to find the BP optimization solution. It can overcome the slower convergence velocity and hardly getting the optimization of the BP neural network. So, aiming at the shortcoming of BP neural network and three-ratio, blurring the boundary of the gas ratio and the QGASAC algorithm is introduced to optimize the BP network. Then the QGASAC-IECBP method is proposed in this paper. Experimental results indicate that the proposed algorithm in this paper that both convergence velocity and veracity are all improved to some extent. And in this paper, the proposed algorithm is robust and practical.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2369-2384
Author(s):  
Weihang Dong ◽  
Xiaolei Guo ◽  
Yong Hu ◽  
Jinxin Wang ◽  
Guangjun Tian

Tool wear conditions monitoring is an important mechanical processing system that can improve the processing quality of wood plastic composite furniture and reduce industrial energy consumption. An appropriate signal, feature extraction method, and model establishment method can effectively improve the accuracy of tool wear monitoring. In this work, an effective method based on discrete wavelet transformation (DWT) and genetic algorithm (GA) – back propagation (BP) neural network was proposed to monitor the tool wear conditions. The spindle power signals under different spindle speeds, depths of milling, and tool wear conditions were collected by power sensors connected to the machine tool control box. Based on the feature extraction method, the approximate coefficients of spindle power signal were extracted by DWT. Then, the extracted approximate coefficients, spindle speeds, depths of milling, and tool wear conditions were taken as samples to train the monitoring model. Threshold and weight of BP neural network were optimized by GA, and the accuracy of monitoring model established by the GA – BP neural network can reach 100%. Thus, the proposed monitoring method can accurately monitor tool wear conditions with different milling parameters, which can achieve the purpose of improving the processing quality of wood plastic composite furniture and reducing energy consumption.


2014 ◽  
Vol 933 ◽  
pp. 384-389
Author(s):  
Xin Zhao ◽  
Shuang Xin Wang

Wind power short-term forcasting of BP neural network based on the small-world optimization is proposed. First, the initial data collected from wind farm are revised, and the unreasonable data are found out and revised. Second, the small-world optimization BP neural network model is proposed, and the model is used on the prediction method of wind speed and wind direction, and the prediction method of power. Finally, by simulation analysis, the NMAE and NRMSE of the power method are smaller than those of the wind speed and wind direction method when the wind power data of one hour later are predicted. When the power method are used to forecast the data one hour later, NMAE is 5.39% and NRMSE is 6.98%.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


2012 ◽  
Vol 217-219 ◽  
pp. 2722-2725
Author(s):  
Jian Xue Chen

Fault diagnosis is an important problem in the process of chemical industry and the artificial neural network is widely applied in fault diagnosis of chemical process. A hybrid algorithm combining ant colony optimization (ACO) algorithm with back-propagation (BP) algorithm, also referred to as ACO-BP algorithm, is proposed to train the neural network weights and thresholds. The basic theory and steps of ACO-BP algorithm are given, and applied in fault diagnosis of the continuous stirred-tank reactor (CSTR). Experimental results prove that ACO-BP algorithm has good fault diagnosis precision, and it can detect the fault in CSTR promptly and effectively.


Sign in / Sign up

Export Citation Format

Share Document