Lipid peroxidation and antioxidants as biomarkers of tissue damage

1995 ◽  
Vol 41 (12) ◽  
pp. 1819-1828 ◽  
Author(s):  
J M Gutteridge

Abstract Disturbance of the balance between the production of reactive oxygen species such as superoxide; hydrogen peroxide; hypochlorous acid; hydroxyl, alkoxyl, and peroxyl radicals; and antioxidant defenses against them produces oxidative stress, which amplifies tissue damage by releasing prooxidative forms of reactive iron that are able to drive Fenton chemistry and lipid peroxidation and by eroding away protective sacrificial antioxidants. The body has a hierarchy of defense strategies to deal with oxidative stress within different cellular compartments, and superimposed on these are gene-regulated defenses involving the heat-shock and oxidant stress proteins.

2016 ◽  
Vol 37 (3) ◽  
pp. 1431 ◽  
Author(s):  
Claudia Russo ◽  
Ana Paula F. Rodrigues Loureiro Bracarense

Reactive oxygen species (ROS), also known as free radicals, are generated during cellular respiration. Under normal conditions, the body has the ability to neutralize the effects of free radicals by using its antioxidant defenses. In the case of an imbalance between oxidants and antioxidants, free radical production exceeds the capacity of organic combustion, resulting in oxidative stress. Of all the cellular components compromised by the harmful effects of ROS, the cell membrane is the most severely affected owing to lipid peroxidation, which invariably leads to changes in the membrane structure and permeability. With lipid peroxidation of the cell membrane, some by-products can be detected and measured in tissues, blood, and other bodily fluids. The measurement of biomarkers of oxidative stress is commonly used to quantify lipid peroxidation of the cell membrane in humans, a species in which ROS can be considered as a cause or consequence of oxidative stress-related diseases. In dogs, few studies have demonstrated this correlation. The present review aims to identify current literature knowledge relating to oxidative stress diseases and their detection in dogs.


Author(s):  
Fasna K. A. ◽  
Geetha N. ◽  
Jean Maliekkal

Background: Ageing is characterized by a gradual decline in body functions and decreased ability to maintain homeostasis. The free radical theory of ageing proposed by Harman D states that ageing is a result of cumulative damage incurred by free radical reactions. Free radicals are highly reactive molecular species with unpaired electrons; generated in the body by several physiological processes. Prime target to free radical attack are the polyunsaturated fatty acids of cell membranes causing lipid peroxidation. The free radicals are neutralized by the exogenous and endogenous antioxidant systems. Oxidative stress occurs when large number of free radicals are produced or the antioxidant activity is impaired. The present study is focused to find out the role of oxidative stress in ageing.Methods: A cross sectional observational study was undertaken to assess the oxidative stress in ageing; by determining the levels of lipid peroxidation product- malondialdehyde (MDA), the antioxidants- superoxide dismutase (SOD) and ceruloplasmin in various age groups. 150 healthy subjects were selected randomly and categorised into three different age groups of 20-30 years, 40-59 years and 60-90 years; with 50 subjects in each group. Results were expressed as mean ± standard deviation.Results: a significant elevation in serum MDA level and a decline in SOD were observed in 40-59 years and 60-90 years age groups. However, an elevated ceruloplasmin level was found in the above age groups.Conclusions: Aforementioned observations are suggestive of an association between oxidative stress and the progression of ageing process.


1991 ◽  
Vol 70 (4) ◽  
pp. 1456-1462 ◽  
Author(s):  
V. Mohsenin

The role of lipid peroxidation in the inactivation of alpha 1-protease inhibitor (alpha 1-PI) in the alveolar lining fluid of human subjects has been examined under oxidant stress. Exposure to nitrogen dioxide (NO2) at 4 ppm for 3 h resulted in a significant increase in the amount of lipid peroxidation products in the alveolar lining fluid, with conjugated dienes the predominant species. Four-week supplementation with vitamins C and E before NO2 exposure markedly decreased the levels of conjugated dienes (control 804 +/- 103 pmol/micrograms total phospholipids vs. vitamin-supplemented 369 +/- 58, P = 0.003). Malondialdehydes, although detectable in the lavage fluid, contributed little to the total amount of lipid peroxidation products, and the levels were comparable in both groups. NO2 exposure in the absence of vitamin supplementation caused a significant decrease in the elastase inhibitory capacity (EIC) of the alveolar lining fluid in the control group but not in the vitamin-supplemented group [control 3.67 +/- 0.32 micrograms alpha 1-PI/micrograms porcine pancreatic elastase (PPE) vs. vitamin-supplemented 2.75 +/- 0.17, P less than 0.03]. The vitamin-supplemented group had a lower level of conjugated dienes and a higher EIC. Conversely, the control group had higher levels of conjugated dienes and a lower EIC in their lavage fluid. These studies demonstrate that lipid peroxidation occurs as an early event during oxidant exposure in the lungs of normal subjects. The appearance of lipid peroxidation products in the lavage fluid is associated with a decrease in the EIC of the alveolar lining fluid. Vitamins C and E diminish lipid peroxidation and preserve the EIC of the lower respiratory tract fluid during oxidant stress.


2019 ◽  
Vol 51 (06) ◽  
pp. 389-395 ◽  
Author(s):  
Gregorio Caimi ◽  
Baldassare Canino ◽  
Maria Montana ◽  
Caterina Urso ◽  
Vincenzo Calandrino ◽  
...  

AbstractThe association between obesity and cardiovascular diseases has a multifactorial pathogenesis, including the synthesis of inflammatory molecules, the increase in oxidative stress and the dysregulation of the matrix metalloprotease (MMP) concentration and activity. In a group of adults with obesity, divided in 2 subgroups according to the body mass index (BMI), we examined lipid peroxidation, expressed as thiobarbituric acid-reactive substances (TBARS), protein oxidation, expressed as protein carbonyl groups (PCs), plasma gelatinases (MMP-2 and MMP-9), and their tissue inhibitors (TIMP-1 and TIMP-2). In the whole group, as well as in the 2 subgroups (with BMI 30–35 or BMI>35) of obese subjects, we observed an increase in TBARS, PCs, MMP-2, and MMP-9, and also TIMP-1 and TIMP-2 in comparison with the control group. A positive correlation between TBARS and PCs emerged in obese subjects and persisted after dividing obese subjects according to BMI. The correlation between MMP-2 and TIMP-2 was not statistically significant, while a significant correlation was present between MMP-9 and TIMP-1. The correlations between the markers of oxidative stress (TBARS and PCs) and those of the MMP/TIMP profile indicated a more marked influence of protein oxidation on MMPs and TIMPs in comparison with TBARS. The innovative aspect of our study was the simultaneous evaluation of oxidative stress markers and MMP/TIMP profile in adult obese subjects. We observed significant alterations and correlations that may negatively influence the clinical course of the disease.


2021 ◽  
Author(s):  
gallayaporn nantachai ◽  
Asara Vasupanrajit ◽  
Chavit Tunvirachaisakul ◽  
Marco Solmi ◽  
Michael Maes

This study aims to systematically review and meta-analyze the nitro-oxidative stress (O&NS)/antioxidant (ANTIOX) ratio in the peripheral blood of people with mild cognitive impairment (MCI). We searched PubMed, Scopus, Google Scholar, and Web of Science for articles published from inception until July 31, 2021. Forty-six studies on 3.798 MCI individuals and 6.063 healthy controls were included. The O&NS/ANTIOX ratio was significantly higher in MCI than in controls with a Standardized Mean Difference (SMD)=0.378 (95% CI: 0.250; 0.506). MCI individuals showed increased lipid peroxidation (SMD=0.774, 95%CI: 4.416; 1.132) and O&NS-associated toxicity (SMD=0.621, CI: 0.377; 0.865) and reduced glutathione (GSH) defenses (SMD=0.725, 95%CI: 0.269; 1.182) as compared with controls. MCI was also accompanied by significantly increased homocysteine (SMD=0.320, CI: 0.059; 0.581), but not protein oxidation, and lowered non-vitamin (SMD=0.347, CI: 0.168; 0.527) and vitamin (SMD=0.564, CI: 0.129; 0.999) antioxidant defenses. The results show that MCI is at least in part due to increased neuro-oxidative toxicity and suggest that treatments targeting lipid peroxidation and the GSH system may be used to treat or prevent MCI.


Author(s):  
Gallayaporn Nantachai ◽  
Asara Vasupanrajit ◽  
Chavit Tunvirachaisakul ◽  
Marco Solmi ◽  
Michael Maes Michael Maes

This study aims to systematically review and meta-analyze the nitro-oxidative stress (O&NS)/antioxidant (ANTIOX) ratio in the peripheral blood of people with mild cognitive impairment (MCI). We searched PubMed, Scopus, Google Scholar, and Web of Science for articles published from inception until July 31, 2021. Forty-six studies on 3.798 MCI individuals and 6.063 healthy controls were included. The O&NS/ANTIOX ratio was significantly higher in MCI than in controls with a Standardized Mean Difference (SMD)=0.378 (95% CI: 0.250; 0.506). MCI individuals showed increased lipid peroxidation (SMD=0.774, 95%CI: 4.416; 1.132) and O&NS-associated toxicity (SMD=0.621, CI: 0.377; 0.865) and reduced glutathione (GSH) defenses (SMD=0.725, 95%CI: 0.269; 1.182) as compared with controls. MCI was also accompanied by significantly increased homocysteine (SMD=0.320, CI: 0.059; 0.581), but not protein oxidation, and lowered non-vitamin (SMD=0.347, CI: 0.168; 0.527) and vitamin (SMD=0.564, CI: 0.129; 0.999) antioxidant defenses. The results show that MCI is at least in part due to increased neuro-oxidative toxicity and suggest that treatments targeting lipid peroxidation and the GSH system may be used to treat or prevent MCI.


Author(s):  
Melford C. Egbujor ◽  
Samuel A. Egu ◽  
Vivian I. Okonkwo ◽  
Alifa D. Jacob ◽  
Pius I. Egwuatu ◽  
...  

The sustained interest in the design of potent antioxidants drugs over the years can be attributed to the indispensable roles antioxidants play in the mitigation of oxidative stress and its concomitant diseases. The high demand for exogenous antioxidants has been ascribed to the prevalence of oxidative stress-mediated diseases such as cancer, diabetes, stroke, cell aging, arteriosclerosis and central nervous system disorders occasioned by a biochemical disequilibrium between the production of free radicals and the body’s ability to eliminate these reactive species from the biological system. COVID-19 severity and death have been linked to a free radical generating process known as the cytokine storm. In an attempt to maintain optimal body function, antioxidant supplementation has increasingly become a wide spread practice because of antioxidants’ ability to directly scavenge free radicals, inhibit oxidative chain reactions thereby increasing the antioxidant defenses of the body. Recent data showed that researchers had made significant efforts to demonstrate the importance and timeliness of antioxidant therapy based on drug design from natural and synthetic sources. Therefore this review presents antioxidant drug design methodologies, identifying the lead and hits to provide a historical and up-to-date collection of research briefs on antioxidant drug design into a single piece in order to ensure easy accessibility, motivate readership and inspire future researches.


2012 ◽  
Vol 66 (3-4) ◽  
pp. 273-283
Author(s):  
Jelka Stevanovic ◽  
Suncica Borozan ◽  
Tatjana Bozic ◽  
Slavoljub Jovic ◽  
Tatjana Djekic ◽  
...  

The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others). There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others), a series of disorders is developed that are jointly called ?oxidative stress.? The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source.


2020 ◽  
Vol 8 (10) ◽  
Author(s):  
Selva Rivas-Arancibia ◽  
Jennifer Balderas-Miranda ◽  
Lizbeth Belmont-Zúñiga ◽  
Martín Martínez-Jáquez ◽  
Eduardo Hernández-Orozco ◽  
...  

Patients with degenerative diseases present a chronic oxidative stress state, which puts them at a disadvantage when facing viral infections such as COVID-19. This is because there is a close relationship between redox signaling and this inflammatory response. Therefore, chronic changes in the redox balance cause alterations in the regulation of the immune system. An inflammatory response that must be reparative and self-limited loses its function and remains over time. In a chronic state of oxidative stress, there is a deficiency of antioxidants. This results in low levels of hormones, vitamins and trace elements, which are essential for the regulation of these systems. Furthermore, low levels of antioxidants imply a diminished capacity for a regulated inflammatory responses are much more vulnerable to a cytokine storm that mainly attacks the lungs, since they present a vicious circle between the null or diminished response of the antioxidant systems and the loss of regulation of the inflammatory process. Therefore, these patients are at a disadvantage in counteracting the response of defense systems to infection from SAR-COV19. A plausible option may be to restore the levels of Vitamins A, B, C, D, E and of essential trace elements such as manganese, selenium, zinc, in the body, which are key to either preventing or reducing the severity of the response of the immune system to the disease caused by SAR-CoV2. For the present review, we searched the specific sites of the Cochrane library database, PubMed and Medscape. The inclusion criteria were documents written in English or Spanish, published during the last 10 years.


Author(s):  
M. Anfiorova ◽  
M. Broshkov ◽  
O. Danchuk

The article presents new scientifi c data on the ratio of erythrocyte populations in puppies' blood during postnatal oxidative stress. It was established that the number of erythrocytes in the blood of one-day-old puppies was 5.64 ± 0.12 T / l, and half of these cells belonged to the population of "mature", 40% - "young" and 10% - "old". In day-old puppies, the content of lipid peroxidation products in erythrocyte hemolysates is quite high, which indicates the development of postnatal oxidative stress. Thus, the content of diene conjugates, ketodienes and Schiff bases is respectively 1,406 ± 0,023 Conv. units, 0.676 ± 0.004 Conv. units and 0.135 ± 0.003 Conv. units. From one to fi ve days age of puppies the number of erythrocytes in the blooddecrease by 1.5 times (p<0.001), mainly due to the decrease in the number of "mature" cells (by 1.6 times; p<0.001). The intensity of peroxide oxidation in the body of puppies even a month after birth is relatively high, as indicated by the content of Schiff bases in the erythrocytes of the blood of these animals - 0.185 ± 0.002 Conv.units. The inverse correlations of the content of Schiff bases in erythrocyte hemolysate with their number in the bloodstream were found to be r = -0.83 (p<0.001). It should also be noted the direct correlation of the content of diene conjugates in the blood of puppies with the number of erythrocytes in their blood (r = 0,58 p <0,05), but the content of ketodienes and conjugated trienes is inversely related to the content of "young" erythroid cells in the puppies' blood (r = -0.57 p <0.05). Consequently, post-natal adaptation of puppies results in the replacement of fetal erythrocytes by postnatal cells, and this process is associated with the intensifi cation of peroxide oxidation and accumulation of the end products of peroxidationin the cells. This process isaccompanied by an acceleration of the process of "aging" of young forms of erythrocytes, as a result of which prerequisites for the development of anemiaare created. Key words: erythrocytes, oxidative stress, puppies, Schiff bases, ketodienes, diene conjugates.


Sign in / Sign up

Export Citation Format

Share Document