scholarly journals Oxidative Stress, Antioxidant Defenses, COVID-19 and Pollution

2020 ◽  
Vol 8 (10) ◽  
Author(s):  
Selva Rivas-Arancibia ◽  
Jennifer Balderas-Miranda ◽  
Lizbeth Belmont-Zúñiga ◽  
Martín Martínez-Jáquez ◽  
Eduardo Hernández-Orozco ◽  
...  

Patients with degenerative diseases present a chronic oxidative stress state, which puts them at a disadvantage when facing viral infections such as COVID-19. This is because there is a close relationship between redox signaling and this inflammatory response. Therefore, chronic changes in the redox balance cause alterations in the regulation of the immune system. An inflammatory response that must be reparative and self-limited loses its function and remains over time. In a chronic state of oxidative stress, there is a deficiency of antioxidants. This results in low levels of hormones, vitamins and trace elements, which are essential for the regulation of these systems. Furthermore, low levels of antioxidants imply a diminished capacity for a regulated inflammatory responses are much more vulnerable to a cytokine storm that mainly attacks the lungs, since they present a vicious circle between the null or diminished response of the antioxidant systems and the loss of regulation of the inflammatory process. Therefore, these patients are at a disadvantage in counteracting the response of defense systems to infection from SAR-COV19. A plausible option may be to restore the levels of Vitamins A, B, C, D, E and of essential trace elements such as manganese, selenium, zinc, in the body, which are key to either preventing or reducing the severity of the response of the immune system to the disease caused by SAR-CoV2. For the present review, we searched the specific sites of the Cochrane library database, PubMed and Medscape. The inclusion criteria were documents written in English or Spanish, published during the last 10 years.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuang Li ◽  
Wenjuan Sun ◽  
Kai Zhang ◽  
Jiawei Zhu ◽  
Xueting Jia ◽  
...  

Abstract Background The immune system is one aspect of health that is affected by dietary selenium (Se) levels and selenoprotein expression. Spleen is an important immune organ of the body, which is directly involved in cellular immunity. However, there are limited reports on Se levels and spleen health. Therefore, this study established a Se-deficient pig model to investigate the mechanism of Se deficiency-induced splenic pathogenesis. Methods Twenty-four pure line castrated male Yorkshire pigs (45 days old, 12.50 ± 1.32 kg, 12 full-sibling pairs) were divided into two equal groups and fed Se-deficient diet (0.007 mg Se/kg) or Se-adequate diet (0.3 mg Se/kg) for 16 weeks. At the end of the trial, blood and spleen were collected to assay for erythroid parameters, the osmotic fragility of erythrocytes, the spleen index, histology, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining, Se concentrations, the selenogenome, redox status, and signaling related inflammation and apoptosis. Results Dietary Se deficiency decreased the erythroid parameters and increased the number of osmotically fragile erythrocytes (P < 0.05). The spleen index did not change, but hematoxylin and eosin and TUNEL staining indicated that the white pulp decreased, the red pulp increased, and splenocyte apoptosis occurred in the Se deficient group. Se deficiency decreased the Se concentration and selenoprotein expression in the spleen (P < 0.05), blocked the glutathione and thioredoxin antioxidant systems, and led to redox imbalance. Se deficiency activated the NF-κB and HIF-1α transcription factors, thus increasing pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-17, and TNF-α), decreasing anti-inflammatory cytokines (IL-10, IL-13, and TGF-β) and increasing expression of the downstream genes COX-2 and iNOS (P < 0.05), which in turn induced inflammation. In addition, Se-deficiency induced apoptosis through the mitochondrial pathway, upregulated apoptotic genes (Caspase3, Caspase8, and Bak), and downregulated antiapoptotic genes (Bcl-2) (P < 0.05) at the mRNA level, thus verifying the results of TUNEL staining. Conclusions These results indicated that Se deficiency induces spleen injury through the regulation of selenoproteins, oxidative stress, inflammation and apoptosis.


Author(s):  
Fasna K. A. ◽  
Geetha N. ◽  
Jean Maliekkal

Background: Ageing is characterized by a gradual decline in body functions and decreased ability to maintain homeostasis. The free radical theory of ageing proposed by Harman D states that ageing is a result of cumulative damage incurred by free radical reactions. Free radicals are highly reactive molecular species with unpaired electrons; generated in the body by several physiological processes. Prime target to free radical attack are the polyunsaturated fatty acids of cell membranes causing lipid peroxidation. The free radicals are neutralized by the exogenous and endogenous antioxidant systems. Oxidative stress occurs when large number of free radicals are produced or the antioxidant activity is impaired. The present study is focused to find out the role of oxidative stress in ageing.Methods: A cross sectional observational study was undertaken to assess the oxidative stress in ageing; by determining the levels of lipid peroxidation product- malondialdehyde (MDA), the antioxidants- superoxide dismutase (SOD) and ceruloplasmin in various age groups. 150 healthy subjects were selected randomly and categorised into three different age groups of 20-30 years, 40-59 years and 60-90 years; with 50 subjects in each group. Results were expressed as mean ± standard deviation.Results: a significant elevation in serum MDA level and a decline in SOD were observed in 40-59 years and 60-90 years age groups. However, an elevated ceruloplasmin level was found in the above age groups.Conclusions: Aforementioned observations are suggestive of an association between oxidative stress and the progression of ageing process.


2014 ◽  
Vol 37 (2) ◽  
pp. 58 ◽  
Author(s):  
Josefina Duran-Bedolla ◽  
Marco A Montes de Oca-Sandoval ◽  
Vianey Saldaña-Navor ◽  
José A Villalobos-Silva ◽  
Maria Carmen Rodriguez ◽  
...  

Purpose: The purpose of this review is to consider the state of oxidative stress, failure of the antioxidant systems and mitochondrial failure as the main physiopathological mechanisms leading to multiple organ dysfunction during sepsis. Principal findings: Sepsis is a clinical syndrome caused by a severe infection that triggers an exaggerated inflammatory response. Involved in the pathogenesis of sepsis are the activation of inflammatory, immune, hormonal, metabolic and bioenergetic responses. One of the pivotal factors in these processes is the increase of reactive species accompanied by the failure of the antioxidant systems, leading to a state of irreversible oxidative stress and mitochondrial failure. In a physiological state, reactive species and antioxidant systems are in redox balance. The loss of this balance during both chronic and infectious diseases leads to a state of oxidative stress, which is considered to be the greatest promoter of a systemic inflammatory response. The loss of the redox balance, together with a systemic inflammatory response during sepsis, can lead to progressive and irreversible mitochondrial failure, energy depletion, hypoxia, septic shock, severe sepsis, multiple organ dysfunction and death of the patient. Conclusion: Knowledge of the molecular processes associated with the development of oxidative stress should facilitate the development of effective therapies and better prognosis for patients with sepsis and organ dysfunction.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Héloïse Proquin ◽  
Marloes C. M. Jonkhout ◽  
Marlon J. Jetten ◽  
Henk van Loveren ◽  
Theo M. de Kok ◽  
...  

AbstractThe food additive titanium dioxide (TiO2), or E171, is a white food colorant. Recent studies showed after E171 ingestion a significantly increased number of colorectal tumours in a colorectal cancer mouse model as well as inflammatory responses and dysregulation of the immune system in the intestine of rats. In the mouse colon, E171 induced gene expression changes related to oxidative stress, impairment of the immune system, activation of signalling and cancer-related processes. E171 comprises nanoparticles (NPs) and microparticles (MPs). Previous in vitro studies showed that E171, NPs and MPs induced oxidative stress responses, DNA damage and micronuclei formation. This study aimed to investigate the relative contribution of the NPs and MPs to effects of E171 at the transcriptome level in undifferentiated Caco-2 cells by genome wide microarray analysis. The results showed that E171, NPs, and MPs induce gene expression changes related to signalling, inflammation, immune system, transport and cancer. At the pathway level, metabolism of proteins with the insulin processing pathway and haemostasis were specific to E171 exposure. The gene expression changes associated with the immune system and inflammation induced by E171, MPs, and NPs suggest the creation of a favourable environment for colon cancer development.


2020 ◽  
pp. FSO628
Author(s):  
Annette d'Arqom ◽  
Melvanda G Putri ◽  
Yovani Savitri ◽  
Andi Muh Rahul Alfaidin

Aim: Low levels of immune-related micronutrients have been identified in β-thalassemia samples. Moreover, the excess amount of iron, contributing to oxidative stress in the pathogenesis of the disease, alters the immune system in β-thalassemia, which is important during the COVID-19 pandemic. Materials & Methods: Searches of PUBMED and EMBASE were conducted to identify the level and supplementation of micronutrients in β-thalassemia, published from 2001-May 2020. Results: The review found six observational and five interventional studies supporting the importance of supplementing vitamins and minerals among patients with β-thalassemia. Conclusion: Supplementation of immune-related vitamins and minerals might bring benefits to the immune system, especially in reducing oxidative stress in β-thalassemia.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Anu Rahal ◽  
Amit Kumar ◽  
Vivek Singh ◽  
Brijesh Yadav ◽  
Ruchi Tiwari ◽  
...  

Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in thein vivoredox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.


2016 ◽  
Vol 37 (3) ◽  
pp. 1431 ◽  
Author(s):  
Claudia Russo ◽  
Ana Paula F. Rodrigues Loureiro Bracarense

Reactive oxygen species (ROS), also known as free radicals, are generated during cellular respiration. Under normal conditions, the body has the ability to neutralize the effects of free radicals by using its antioxidant defenses. In the case of an imbalance between oxidants and antioxidants, free radical production exceeds the capacity of organic combustion, resulting in oxidative stress. Of all the cellular components compromised by the harmful effects of ROS, the cell membrane is the most severely affected owing to lipid peroxidation, which invariably leads to changes in the membrane structure and permeability. With lipid peroxidation of the cell membrane, some by-products can be detected and measured in tissues, blood, and other bodily fluids. The measurement of biomarkers of oxidative stress is commonly used to quantify lipid peroxidation of the cell membrane in humans, a species in which ROS can be considered as a cause or consequence of oxidative stress-related diseases. In dogs, few studies have demonstrated this correlation. The present review aims to identify current literature knowledge relating to oxidative stress diseases and their detection in dogs.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qichao Hu ◽  
Caiyan Qu ◽  
Xiaolin Xiao ◽  
Wenwen Zhang ◽  
Yinxiao Jiang ◽  
...  

AbstractWith the advances in biomedical technologies, natural products have attracted substantial public attention in the area of drug discovery. Flavonoids are a class of active natural products with a wide range of pharmacological effects that are used for the treatment of several diseases, in particular chronic metabolic diseases. Diabetic nephropathy is a complication of diabetes with a particularly complicated pathological mechanism that affects at least 30% of diabetic patients and represents a great burden on public health. A large number of studies have shown that flavonoids can alleviate diabetic nephropathy. This review systematically summarizes the use of common flavonoids for the treatment of diabetic nephropathy. We found that flavonoids play a therapeutic role in diabetic nephropathy mainly by regulating oxidative stress and inflammation. Nrf-2/GSH, ROS production, HO-1, TGF-β1 and AGEs/RAGE are involved in the process of oxidative stress regulation. Quercetin, apigenin, baicalin, luteolin, hesperidin, genistein, proanthocyanidin and eriodictyol were found to be capable of alleviating oxidative stress related to the aforementioned factors. Regarding inflammatory responses, IL-1, IL-6β, TNF-α, SIRT1, NF-κB, and TGF-β1/smad are thought to be essential. Quercetin, kaempferol, myricetin, rutin, genistein, proanthocyanidin and eriodictyol were confirmed to influence the above targets. As a result, flavonoids promote podocyte autophagy and inhibit the overactivity of RAAS by suppressing the upstream oxidative stress and inflammatory pathways, ultimately alleviating DN. The above results indicate that flavonoids are promising drugs for the treatment of diabetic nephropathy. However, due to deficiencies in the effect of flavonoids on metabolic processes and their lack of structural stability in the body, further research is required to address these issues.


Author(s):  
Yufei Xie ◽  
Annemarie H. Meijer ◽  
Marcel J. M. Schaaf

Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.


2020 ◽  
Author(s):  
Jianbing Zhu ◽  
Hang Chen ◽  
Yuanji Ma ◽  
Haibo Liu ◽  
Zhaoyang Chen

Abstract BackgroundNecrosis of ischemic cardiomyocytes after myocardial infarction (MI) activates an intense inflammatory reaction. Dendritic cells (DCs) play a crucial role in the repair process after MI. Tolerogenic DCs (tDCs) can inhibit inflammatory responses. Methods and resultsWe investigated the role of atorvastatin and supernatants of necrotic cardiomyocytes (SNC) on DCs. We found that SNC induced DCs maturation, activated TLR-4/NF-κB pathway, promoted inflammatory cytokines secretion and oxidative stress. Co-treatment with SNC and atorvastatin suppressed DC maturation and inflammatory response, which meant that atorvastatin induced DCs tolerate to SNC. Then, we investigated the effect of mDCs induced by SNC and tDCs induced by atorvastatin on ventricular remodeling after MI. tDCs treatment significantly improved the left ventricular systolic function, reduced the infiltration of MPO+ neutrophil, Mac3+ macrophages and CD3+ T cells, inhibited myocardial apoptosis and fibrosis, and decreased infarct size. Compared with PBS, treatment with mDCs did not showed beneficial effect on ventricular remodeling and inflammatory reaction after MI in mice.ConclusionAtorvastatin inactivated the TLR-4/NF-κB pathway, repressed the oxidative stress, inflammatory response, and immune maturity induced by SNC. Treatment with tDCs, induced by co-treated with atorvastatin, preserved left ventricular function, limited infarct size, suppressed the infiltration of inflammatory cells, and attenuated the severity of fibrosis, and reduced the number of apoptotic cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document