PCSK9 and LRP5 in macrophage lipid internalization and inflammation

Author(s):  
Lina Badimon ◽  
Aureli Luquero ◽  
Javier Crespo ◽  
Esther Peña ◽  
Maria Borrell-Pages

Abstract Aims Atherosclerosis, the leading cause of cardiovascular diseases, is driven by high blood cholesterol levels and chronic inflammation. Low-density lipoprotein receptors (LDLR) play a critical role in regulating blood cholesterol levels by binding to and clearing LDLs from the circulation. The disruption of the interaction between proprotein convertase subtilisin/kexin 9 (PCSK9) and LDLR reduces blood cholesterol levels. It is not well known whether other members of the LDLR superfamily may be targets of PCSK9. The aim of this work was to determine if LDLR-related protein 5 (LRP5) is a PCSK9 target and to study the role of PCSK9 and LRP5 in foam cell formation and lipid accumulation. Methods and results Primary cultures of human inflammatory cells (monocytes and macrophages) were silenced for LRP5 or PCSK9 and challenged with LDLs. We first show that LRP5 is needed for macrophage lipid uptake since LRP5-silenced macrophages show less intracellular CE accumulation. In macrophages, internalization of LRP5-bound LDL is already highly evident after 5 h of LDL incubation and lasts up to 24 h; however, in the absence of both LRP5 and PCSK9, there is a strong reduction of CE accumulation indicating a role for both proteins in lipid uptake. Immunoprecipitation experiments show that LRP5 forms a complex with PCSK9 in lipid-loaded macrophages. Finally, PCSK9 participates in TLR4/NFkB signalling; a decreased TLR4 protein expression levels and a decreased nuclear translocation of NFκB were detected in PCSK9 silenced cells after lipid loading, indicating a downregulation of the TLR4/NFκB pathway. Conclusion Our results show that both LRP5 and PCSK9 participate in lipid uptake in macrophages. In the absence of LRP5, there is a reduced release of PCSK9 indicating that LRP5 also participates in the mechanism of release of soluble PCSK9. Furthermore, PCSK9 up-regulates TLR4/NFκB favouring inflammation.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Borrell ◽  
J Crespo ◽  
L Badimon

Abstract Background Atherosclerosis, the leading cause of cardiovascular diseases, is driven by high blood cholesterol levels and chronic inflammation. The disruption of the hepatic interaction between Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) and Low-Density Lipoprotein Receptor (LDLR) downregulates blood cholesterol levels and reduces cardiovascular events. Recent data suggest that other members of the LDLR superfamily may be targets of PCSK9. Purpose The aim of this work is to determine if LDLR-related protein 5 (LRP5) is a PCSK9 target, and to study the role of PCSK9 and LRP5 in foam cell formation and hence, in the mechanism of lipid accumulation and atherosclerotic plaque formation. Methods Intracellular protein and lipid localization, cholesteryl esters (CE) accumulation; quantification of structural and inflammatory proteins expression and immunoprecipitation analyses were performed in primary cultures of human inflammatory cells (monocytes and macrophages) silenced for LRP5 or PCSK9 and challenged with modified LDLs. Results We first show that LRP5 is needed for macrophage lipid uptake since LRP5-silenced macrophages have less intracellular CE accumulation. In LDL treated macrophages internalization of LRP5-bound LDL starts after 30 minutes of incubation and lasts up to 24hours. The SREBP-2 promoter is not involved in LRP5 regulation but it does regulate macrophage PCSK9 expression. Immunoprecipitation experiments show that LRP5 forms a complex with PCSK9 in lipid-loaded macrophages. Finally we studied the role of PCSK9 and LRP5 in the inflammatory response by TLR4/NFkB signaling pathway. We show decreased TLR4 protein expression levels and decreased nuclear translocation of NFκB in PCSK9 silenced-inflammatory cells after lipid loading indicating a downregulation of the proinflammatory pathway TLR4/NFκB. Increased gene expression is observed in TNF-α and IL1β after lipid-loading that is abolished in PCSK9-silenced macrophages. Furthermore release of the proinflammatory cytokines TNF-α and IL1β is decreased in PCSK9-silenced macrophages. LRP5 protein expression is increased in lipid-loaded macrophages independent of the presence or absence of PCSK9. Conclusions These results demonstrate that, in human macrophages, LRP5 is internalized with lipids. Furthermore, PCSK9 and LRP5 can form a complex in the cytoplasm of lipid-loaded macrophages opening the possibility that PCSK9 induces lysosomal LRP5 degradation in a similar manner than it does with LDLR. Finally we also show that PCSK9 gene interference decreases inflammation and supports a role for PCSK9 as an inflammatory mediator in atherosclerosis. Acknowledgement/Funding CN16/11/00411-LB; TERCEL RD16/0011/018-LB; FIS2016-02014 -MBP; SEC2015 to MBP


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hong-Wei Wang ◽  
Naotsugu Oyama ◽  
Yoshiyuki Rikitake ◽  
Shiro Kitamoto ◽  
Jonathan Gitlin ◽  
...  

Background: Rho kinases (ROCKs) are serine-threonine protein kinases that regulate various cellular functions. There is increasing evidence that the RhoA/ROCK pathway plays an important pathophysiological role in cardiovascular diseases. However, direct evidence of which ROCK isoforms or target tissues are involved in the atherogenic process is still lacking. Objective: The aim of this study was to determine the effect of ROCK1 deficiency on atherogenesis and how ROCK1 affects key atherosclerosis-related macrophage function such as lipid uptake and chemotaxis. Methods: We utilized ROCK1 −/− mice and the atherosclerosis-prone apolipoprotein E knockout (apoE −/− ) mice or low-density lipoprotein receptor knockout (LDLR −/− ) mice to investigate the role of ROCK1 in the pathogenesis of atherosclerotic plaque formation. Bone marrow-derived macrophages from ROCK1 −/− and ROCK1 +/+ mice were used to investigate acetylated (Ac)LDL-mediated foam cell formation and chemotaxis. Results: Compared to atherosclerosis-prone apoE −/− mice, apoE −/− ROCK1 +/− mice had substantially less fatty streaks foam cells and atherosclerosis (77.0 ± 12.9 × 10 3 μm 2 versus 166.4 ± 14.6 × 10 3 μm 2 , P < 0.01). Atherosclerotic lesions were reduced also in LDLR −/− mice, whose bone marrow were replaced with bone marrow derived from ROCK1 −/− mice compared to ROCK1 +/+ recipients (181.5 ± 15.6 × 10 3 μm 2 versus 448.5 ± 33.3 × 10 3 μm 2 , P < 0.05). Bone marrow-derived ROCK1-deficient macrophages exhibited impaired chemotaxis to monocyte chemotactic protein-1 and showed reduced ability to take up lipids and to develop into foam cells when exposed to modified low density lipoprotein. Conclusion: These findings indicate that ROCK1 in macrophages is a critical mediator of foam cell formation, macrophage chemotaxis and atherogenesis, and suggest that macrophage ROCK1 may be an important therapeutic target for vascular inflammation and atherosclerosis.


Author(s):  
Dun Niu ◽  
Lanfang Li ◽  
Zhizhong Xie

Chloride channel 3 (ClC-3), a Cl−/H+ antiporter, has been well established as a member of volume-regulated chloride channels (VRCCs). ClC-3 may be a crucial mediator for activating inflammation-associated signaling pathways by regulating protein phosphorylation. A growing number of studies have indicated that ClC-3 overexpression plays a crucial role in mediating increased plasma low-density lipoprotein levels, vascular endothelium dysfunction, pro-inflammatory activation of macrophages, hyper-proliferation and hyper-migration of vascular smooth muscle cells (VSMCs), as well as oxidative stress and foam cell formation, which are the main factors responsible for atherosclerotic plaque formation in the arterial wall. In the present review, we summarize the molecular structures and classical functions of ClC-3. We further discuss its emerging role in the atherosclerotic process. In conclusion, we explore the potential role of ClC-3 as a therapeutic target for atherosclerosis.


2021 ◽  
Vol 14 (6) ◽  
pp. 567
Author(s):  
Su Wutyi Thant ◽  
Noppawan Phumala Morales ◽  
Visarut Buranasudja ◽  
Boonchoo Sritularak ◽  
Rataya Luechapudiporn

Oxidation of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis. Hemin (iron (III)-protoporphyrin IX) is a degradation product of hemoglobin that can be found in thalassemia patients. Hemin is a strong oxidant that can cause LDL oxidation and contributes to atherosclerosis in thalassemia patients. Lusianthridin from Dendrobium venustrum is a phenolic compound that possesses antioxidant activity. Hence, lusianthridin could be a promising compound to be used against hemin-induced oxidative stress. The major goal of this study is to evaluate the protective effect of lusianthridin on hemin-induced low-density lipoprotein oxidation (he-oxLDL). Here, various concentrations of lusianthridin (0.25, 0.5, 1, and 2 µM) were preincubated with LDL for 30 min, then 5 µM of hemin was added to initiate the oxidation, and oxidative parameters were measured at various times of incubation (0, 1, 3, 6, 12, 24 h). Lipid peroxidation of LDL was measured by thiobarbituric reactive substance (TBARs) assay and relative electrophoretic mobility (REM). The lipid composition of LDL was analyzed by using reverse-phase HPLC. Foam cell formation with he-oxLDL in RAW 264.7 macrophage cells was detected by Oil Red O staining. The results indicated that lusianthridin could inhibit TBARs formation, decrease REM, decrease oxidized lipid products, as well as preserve the level of cholesteryl arachidonate and cholesteryl linoleate. Moreover, He-oxLDL incubated with lusianthridin for 24 h can reduce the foam cell formation in RAW 264.7 macrophage cells. Taken together, lusianthridin could be a potential agent to be used to prevent atherosclerosis in thalassemia patients.


2021 ◽  
Vol 22 (5) ◽  
pp. 2529
Author(s):  
Amin Javadifar ◽  
Sahar Rastgoo ◽  
Maciej Banach ◽  
Tannaz Jamialahmadi ◽  
Thomas P. Johnston ◽  
...  

Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 655
Author(s):  
Hiroyuki Itabe ◽  
Naoko Sawada ◽  
Tomohiko Makiyama ◽  
Takashi Obama

Oxidative modification of lipoproteins is implicated in the occurrence and development of atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic; however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular diseases. A modified structure of oxLDL, which was increased in the plasma of patients with acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of oxLDL and oxHDL in circulation.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Christina Grothusen ◽  
Harald Schuett ◽  
Stefan Lumpe ◽  
Andre Bleich ◽  
Silke Glage ◽  
...  

Introduction: Atherosclerosis is a chronic inflammatory disease of the cardiovascular system which may result in myocardial infarction and sudden cardiac death. While the role of pro-inflammatory signaling pathways in atherogenesis has been well characterized, the impact of their negative regulators, e.g. suppressor of cytokine signaling (SOCS)-1 remains to be elucidated. Deficiency of SOCS-1 leads to death 3 weeks post-partum due to an overwhelming inflammation caused by an uncontrolled signalling of interferon-gamma (IFNγ). This phenotype can be rescued by generating recombination activating gene (rag)-2, SOCS-1 double knock out (KO) mice lacking mature lymphocytes, the major source of IFNγ. Since the role of SOCS-1 during atherogenesis is unknown, we investigated the impact of a systemic SOCS-1 deficiency in the low-density lipoprotein receptor (ldlr) KO model of atherosclerosis. Material and Methods: socs-1 −/− /rag-2 −/− deficient mice were crossed with ldlr-KO animals. Mice were kept under sterile conditions on a normal chow diet. For in-vitro analyses, murine socs-1 −/− macrophages were stimulated with native low density lipoprotein (nLDL) or oxidized (ox)LDL. SOCS-1 expression was determined by quantitative PCR and western blot. Foam cell formation was determined by Oil red O staining. Results: socs-1 −/− /rag-2 −/− /ldlr −/− mice were born according to mendelian law. Tripel-KO mice showed a reduced weight and size, were more sensitive to bacterial infections and died within 120 days (N=17). Histological analyses revealed a systemic, necrotic, inflammation in Tripel-KO mice. All other genotypes developed no phenotype. In-vitro observations revealed that SOCS-1 mRNA and protein is upregulated in response to stimulation with oxLDL but not with nLDL. Foam cell formation of socs-1 −/− macrophages was increased compared to controls. Conclusion: SOCS-1 seemingly controls critical steps of atherogenesis by modulating foam cell formation in response to stimulation with oxLDL. SOCS-1 deficiency in the ldlr-KO mouse leads to a lethal inflammation. These observations suggest a critical role for SOCS-1 in the regulation of early inflammatory responses in atherogenesis.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Marit Westerterp ◽  
Panagiotis Fotakis ◽  
Mireille Ouimet ◽  
Andrea E Bochem ◽  
Hanrui Zhang ◽  
...  

Plasma high-density-lipoprotein (HDL) has several anti-atherogenic properties, including its key role in functioning as acceptor for ATP-binding cassette A1 and G1 (ABCA1 and ABCG1) mediated cholesterol efflux. We have shown previously that macrophage Abca1/g1 deficiency accelerates atherosclerosis, by enhancing foam cell formation and inflammatory cytokine expression in atherosclerotic plaques. Macrophage cholesterol accumulation activates the inflammasome, leading to caspase-1 cleavage, required for IL-1β and IL-18 secretion. Several studies have suggested that inflammasome activation accelerates atherogenesis. We hypothesized that macrophage Abca1/g1 deficiency activates the inflammasome. In Ldlr -/- mice fed a Western type diet (WTD), macrophage Abca1/g1 deficiency increased IL-1β and IL-18 plasma levels (2-fold; P <0.001), and induced caspase-1 cleavage. Deficiency of the inflammasome components Nlrp3 or caspase-1 in macrophage Abca1/g1 knockouts reversed the increase in plasma IL-18 levels ( P <0.001), indicating these changes were inflammasome dependent. We found that macrophage Abca1/g1 deficiency induced caspase-1 cleavage in splenic CD115 + monocytes and CD11b + macrophages. While mitochondrial ROS production or lysosomal function were not affected, macrophage Abca1/g1 deficiency led to an increased splenic population of monocytes (2.5-fold; P <0.01). Monocytes secrete ATP, and as a result, ATP secretion from total splenic cells was increased (2.5-fold; P <0.01), likely contributing to inflammasome activation. Caspase-1 deficiency decreased atherosclerosis in macrophage Abca1/g1 deficient Ldlr -/- mice fed WTD for 8 weeks (225822 vs 138606 μm 2 ; P <0.05). Of therapeutic interest, one injection of reconstituted HDL (100 mg/kg) in macrophage Abca1/g1 knockouts decreased plasma IL-18 levels ( P <0.05). Tangier disease patients, with a homozygous loss-of-function for ABCA1, showed increased IL-1β and IL-18 plasma levels (3-fold; P <0.001), suggesting that cholesterol efflux pathways also suppress inflammasome activation in humans. These findings suggest that macrophage cholesterol efflux pathways suppress inflammasome activation, possibly contributing to the anti-atherogenic effects of HDL treatment.


2018 ◽  
Vol 132 (23) ◽  
pp. 2493-2507 ◽  
Author(s):  
Yuki Sato ◽  
Rena Watanabe ◽  
Nozomi Uchiyama ◽  
Nana Ozawa ◽  
Yui Takahashi ◽  
...  

Vasostatin-1, a chromogranin A (CgA)-derived peptide (76 amino acids), is known to suppress vasoconstriction and angiogenesis. A recent study has shown that vasostatin-1 suppresses the adhesion of human U937 monocytes to human endothelial cells (HECs) via adhesion molecule down-regulation. The present study evaluated the expression of vasostatin-1 in human atherosclerotic lesions and its effects on inflammatory responses in HECs and human THP-1 monocyte-derived macrophages, macrophage foam cell formation, migration and proliferation of human aortic smooth muscle cells (HASMCs) and extracellular matrix (ECM) production by HASMCs, and atherogenesis in apolipoprotein E-deficient (ApoE−/−) mice. Vasostatin-1 was expressed around Monckeberg’s medial calcific sclerosis in human radial arteries. Vasostatin-1 suppressed lipopolysaccharide (LPS)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HECs. Vasostatin-1 suppressed inflammatory M1 phenotype and LPS-induced interleukin-6 (IL-6) secretion via nuclear factor-κB (NF-κB) down-regulation in macrophages. Vasostatin-1 suppressed oxidized low-density lipoprotein (oxLDL)-induced foam cell formation associated with acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) and CD36 down-regulation and ATP-binding cassette transporter A1 (ABCA1) up-regulation in macrophages. In HASMCs, vasostatin-1 suppressed angiotensin II (AngII)-induced migration and collagen-3 and fibronectin expression via decreasing ERK1/2 and p38 phosphorylation, but increased elastin expression and matrix metalloproteinase (MMP)-2 and MMP-9 activities via increasing Akt and JNK phosphorylation. Vasostatin-1 did not affect the proliferation and apoptosis in HASMCs. Four-week infusion of vasostatin-1 suppressed the development of aortic atherosclerotic lesions with reductions in intra-plaque inflammation, macrophage infiltration, and SMC content, and plasma glucose level in ApoE−/− mice. These results indicate the inhibitory effects of vasostatin-1 against atherogenesis. The present study provided the first evidence that vasostatin-1 may serve as a novel therapeutic target for atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document