scholarly journals MMHub, a database for the mulberry metabolome

Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Dong Li ◽  
Bi Ma ◽  
Xiaofei Xu ◽  
Guo Chen ◽  
Tian Li ◽  
...  

Abstract Mulberry is an important economic crop plant and traditional medicine. It contains a huge array of bioactive metabolites such as flavonoids, amino acids, alkaloids and vitamins. Consequently, mulberry has received increasing attention in recent years. MMHub (version 1.0) is the first open public repository of mass spectra of small chemical compounds (<1000 Da) in mulberry leaves. The database contains 936 electrospray ionization tandem mass spectrometry (ESI-MS2) data and lists the specific distribution of compounds in 91 mulberry resources with two biological duplicates. ESI-MS2 data were obtained under non-standardized and independent experimental conditions. In total, 124 metabolites were identified or tentatively annotated and details of 90 metabolites with associated chemical structures have been deposited in the database. Supporting information such as PubChem compound information, molecular formula and metabolite classification are also provided in the MS2 spectral tag library. The MMHub provides important and comprehensive metabolome data for scientists working with mulberry. This information will be useful for the screening of quality resources and specific metabolites of mulberry. Database URL: https://biodb.swu.edu.cn/mmdb/

2016 ◽  
Vol 71 (4) ◽  
pp. 287-295 ◽  
Author(s):  
Mohamed Shaaban ◽  
Mohammad Magdy El-Metwally ◽  
Hartmut Laatsch

AbstractThree new bioactive compounds, namely (S)-tenellic acid B dimethyl acetal (1a), (3R,3′R/S)-isotalarone (2), and (3R,5R)-cis-5-methyl-3-(2-oxobutyl)-dihydrofuran-2-one (3), were isolated from the terrestrial fungus Penicillium purpurogenum MM, together with 15 known metabolites: talaroflavone, pestalasin A, altenuene, penicillide, 3′-O-methyl-dehydroisopenicillide, rubralactone, tenellic acid B, diaporthin, butyrolactone 1, butyrolactone-V, 4-hydroxy-2-methoxyacetanilide, ergosterol, ergosterol peroxide, linoleic acid, and glycerol monolinoleate. The chemical structures of the three new compounds were confirmed by extensive one- and two-dimensional NMR and electron spray ionization high-resolution mass spectra measurements and by comparison with literature data. The absolute configurations of the new compounds, and of talaroflavone (4a) and tenellic acid B (2b), were determined by ab initio calculations of ECD, ORD, and NMR data. The antimicrobial and cytotoxic activities of the crude extract and of the isolated compounds were studied using a set of microorganisms and brine shrimp assay, respectively. The isolation and taxonomic characterization of P. purpurogenum MM is reported.


Author(s):  
Georgiana Uță ◽  
Denisa Ștefania Manolescu ◽  
Speranța Avram

Background.: Currently, the pharmacological management in Alzheimer's disease is based on several chemical structures, represented by acetylcholinesterase and N-methyl-D-aspartate (NMDA) receptor ligands, with still unclear molecular mechanisms, but severe side effects. For this reason, a challenge for Alzheimer's disease treatment remains to identify new drugs with reduced side effects. Recently, the natural compounds, in particular certain chemical compounds identified in the essential oil of peppermint, sage, grapes, sea buckthorn, have increased interest as possible therapeutics. Objectives.: In this paper, we have summarized data from the recent literature, on several chemical compounds extracted from Salvia officinalis L., with therapeutic potential in Alzheimer's disease. Methods.: In addition to the wide range of experimental methods performed in vivo and in vitro, also we presented some in silico studies of medicinal compounds. Results. Through this mini-review, we present the latest information regarding the therapeutic characteristics of natural compounds isolated from Salvia officinalis L. in Alzheimer's disease. Conclusion.: Thus, based on the information presented, we can say that phytotherapy is a reliable therapeutic method in a neurodegenerative disease.


2018 ◽  
Vol 74 (1-2) ◽  
pp. 35-43
Author(s):  
Wei Gao ◽  
Muhammad Kamran Siddiqui ◽  
Najma Abdul Rehman ◽  
Mehwish Hussain Muhammad

Abstract Dendrimers are large and complex molecules with very well defined chemical structures. More importantly, dendrimers are highly branched organic macromolecules with successive layers or generations of branch units surrounding a central core. Topological indices are numbers associated with molecular graphs for the purpose of allowing quantitative structure-activity relationships. These topological indices correlate certain physico-chemical properties such as the boiling point, stability, strain energy, and others, of chemical compounds. In this article, we determine hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials for hetrofunctional dendrimers, triangular benzenoids, and nanocones.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Sevasti-Kiriaki Zervou ◽  
Triantafyllos Kaloudis ◽  
Spyros Gkelis ◽  
Anastasia Hiskia ◽  
Hanna Mazur-Marzec

Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC–qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.


2020 ◽  
Vol 9 (4) ◽  
pp. 318-327
Author(s):  
Sangeeta Dahiya ◽  
Daizy R. Batish ◽  
Harminader Pal Singh

Pogostemon benghalensis (Burm.f.) Kuntze (Lamiaceae) is an important aromatic plant. Multiple classes of phytochemicals such as flavonoids, phenols, phytosteroids, carbohydrates, fatty acids, glycosides, sterols, terpenoids, tannins, essential oil, and alkaloids have been isolated from the title species. Different plant parts have been used as traditional remedies for various ailments. The present review aims to update and coherent the fragmented information on botanical aspects, phytochemistry, traditional uses, and pharmacological activities. An extensive review of the literature was carried out by using various search engines like PubMed, Scopus, Science Direct, Google Scholar, Google, Scifinder for information. The articles were searched using the keywords "Pogostemon", "Parviflorus’, "benghalensis". Chemical structures of the chemical compounds were drawn using software Chem Draw ultra 8.0. Most of the plant parts have been used for the treatment of various ailments. Phytochemistry reveals that the plant is a rich source of various biologically active compounds. Pogostemon extracts exhibited numerous pharmacological effects like anticancer, anti-inflammatory, antimicrobial and antioxidant activities. In sum, P. benghalensis is a promising aromatic and medicinal plant as depicted by its various traditional uses and pharmacological studies. Bioactive compounds, responsible for its various pharmacological activities at the molecular level, need further detailed investigations. Future clinical studies are also required to validate the various traditional uses of P. benghalensis.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Andreas A. Hildebrand ◽  
Erika Pfeiffer ◽  
Georg Damm ◽  
Manfred Metzler

Recent studies on the mammalian and fungal metabolism of the mycotoxin zearalenone (ZEN) have disclosed the formation of six regioisomers of monohydroxy-ZEN and its reductive metabolite zearalenol (ZEL). Hydroxylation occurs at the aromatic ring or at one of four positions of the aliphatic macrocycle. In addition, an aliphatic ZEN epoxide, its hydrolysis product, and other products were identified in fungal cultures. In this paper, we report the product ion spectra of the [M-H]− ions of 22 oxidative metabolites of ZEN and ZEL, obtained by LC-MS2 analysis using a linear ion trap mass spectrometer with negative electrospray ionization. The MS2 spectra exhibit qualitative and quantitative differences which allow a clear distinction of most metabolites. Moreover, GC-MS analysis of the trimethylsilylated metabolites yields electron impact mass spectra with numerous fragment ions which can be used as fingerprint to confirm the chemical structure derived by LC-MS2 analysis.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 831 ◽  
Author(s):  
Zahid Raza ◽  
Mark Essa K. Sukaiti

The association of M-polynomial to chemical compounds and chemical networks is a relatively new idea, and it gives good results about the topological indices. These results are then used to correlate the chemical compounds and chemical networks with their chemical properties and bioactivities. In this paper, an effort is made to compute the general form of the M-polynomials for two classes of dendrimer nanostars and four types of nanotubes. These nanotubes have very nice symmetries in their structural representations, which have been used to determine the corresponding M-polynomials. Furthermore, by using the general form of M-polynomial of these nanostructures, some degree-based topological indices have been computed. In the end, the graphical representation of the M-polynomials is shown, and a detailed comparison between the obtained topological indices for aforementioned chemical structures is discussed.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 734 ◽  
Author(s):  
Yawei Zhao ◽  
Guoquan Li ◽  
Yunliang Chen ◽  
Yinhua Lu

The genome of Streptomyces encodes a high number of natural product (NP) biosynthetic gene clusters (BGCs). Most of these BGCs are not expressed or are poorly expressed (commonly called silent BGCs) under traditional laboratory experimental conditions. These NP BGCs represent an unexplored rich reservoir of natural compounds, which can be used to discover novel chemical compounds. To activate silent BGCs for NP discovery, two main strategies, including the induction of BGCs expression in native hosts and heterologous expression of BGCs in surrogate Streptomyces hosts, have been adopted, which normally requires genetic manipulation. So far, various genome editing technologies have been developed, which has markedly facilitated the activation of BGCs and NP overproduction in their native hosts, as well as in heterologous Streptomyces hosts. In this review, we summarize the challenges and recent advances in genome editing tools for Streptomyces genetic manipulation with a focus on editing tools based on clustered regularly interspaced short palindrome repeat (CRISPR)/CRISPR-associated protein (Cas) systems. Additionally, we discuss the future research focus, especially the development of endogenous CRISPR/Cas-based genome editing technologies in Streptomyces.


2018 ◽  
Vol 5 (4) ◽  
pp. 79 ◽  
Author(s):  
Pilar A. Soledispa ◽  
José González ◽  
Armando Cuéllar ◽  
Julio Pérez ◽  
Max Monan

A preliminary chemical characterization of main components of ethanolic extract with dried rhizomes of Smilax domingensis Wid. that grow in Cuba was done using a GCMS-QP2010 Ultra Shimadzu and the mass spectra of the compounds found in the extract was matched with the National Institute of Standards and Technology (NIST) library. After sample derivatization 125 chemical compounds were registered by the equipment and from them, 35 different chemical components were characterized and reported for the first time from this part of the plant in our country. The results demonstrate the developed method could be employed as a rapid and versatile analytical technique for identification of chemical constituents and quality control of Smilax domingensis.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 253-258
Author(s):  
José Martín ◽  
Jesús Ortega ◽  
Pilar López

Chemical signals have an important role in the reproductive behaviour of many lizards. However, the compounds secreted by their femoral or preanal glands, which may be used as sexual signals, are mainly known for lizard species within the Scleroglossa clade, whereas compounds in secretions of lizards within the Iguania clade are much less studied. Based on mass spectra, obtained by GC-MS, we found 60 lipophilic compounds in preanal gland secretions of the male tree agama (Acanthocercus atricollis) (fam. Agamidae), including steroids (mainly cholesterol, cholest-3-ene, and some of their derivatives), fatty acids ranging between n-C12 and n-C18 (mainly hexadecanoic and octadecenoic acids), ketones from n-C17 to n-C25, and other minor compounds, such as tocopherol, squalene, waxy esters, and furanones. We compare the compounds found with those present in other lizard species and discuss their potential function in social behaviour


Sign in / Sign up

Export Citation Format

Share Document