scholarly journals Comparative Analysis ofViperidaeVenoms Antibacterial Profile: a Short Communication for Proteomics

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Bruno L. Ferreira ◽  
Dilvani O. Santos ◽  
André Luis dos Santos ◽  
Carlos R. Rodrigues ◽  
Cícero C. de Freitas ◽  
...  

Bacterial infections involving multidrug-resistant strains are one of the ten leading causes of death and an important health problem in need for new antibacterial sources and agents. Herein, we tested and compared four snake venoms (Agkistrodon rhodostoma, Bothrops jararaca, B. atrox and Lachesis muta) against 10 Gram-positive and Gram-negative drug-resistant clinical bacteria strains to identify them as new sources of potential antibacterial molecules. Our data revealed that, as efficient as some antibiotics currently on the market (minimal inhibitory concentration (MIC) = 1–32 μg mL−1),A. rhodostomaandB. atroxvenoms were active againstStaphylococcus epidermidisandEnterococcus faecalis(MIC = 4.5 μg mL−1), whileB. jararacainhibitedS. aureusgrowth (MIC = 13 μg ml−1). As genomic and proteomic technologies are improving and developing rapidly, our results suggested thatA. rhodostoma, B. atroxandB. jararacavenoms and glands are feasible sources for searching antimicrobial prototypes for future design new antibiotics against drug-resistant clinical bacteria. They also point to an additional perspective to fully identify the pharmacological potential of these venoms by using different techniques.

2016 ◽  
Vol 29 (2) ◽  
pp. 321-347 ◽  
Author(s):  
Matthew E. Falagas ◽  
Evridiki K. Vouloumanou ◽  
George Samonis ◽  
Konstantinos Z. Vardakas

SUMMARYThe treatment of bacterial infections suffers from two major problems: spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) pathogens and lack of development of new antibiotics active against such MDR and XDR bacteria. As a result, physicians have turned to older antibiotics, such as polymyxins, tetracyclines, and aminoglycosides. Lately, due to development of resistance to these agents, fosfomycin has gained attention, as it has remained active against both Gram-positive and Gram-negative MDR and XDR bacteria. New data of higher quality have become available, and several issues were clarified further. In this review, we summarize the available fosfomycin data regarding pharmacokinetic and pharmacodynamic properties, thein vitroactivity against susceptible and antibiotic-resistant bacteria, mechanisms of resistance and development of resistance during treatment, synergy and antagonism with other antibiotics, clinical effectiveness, and adverse events. Issues that need to be studied further are also discussed.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Valentina Laverde-Rojas ◽  
Yamil Liscano ◽  
Sandra Patricia Rivera-Sánchez ◽  
Ivan Darío Ocampo-Ibáñez ◽  
Yeiston Betancourt ◽  
...  

Colistin is a re-emergent antibiotic peptide used as a last resort in clinical practice to overcome multi-drug resistant (MDR) Gram-negative bacterial infections. Unfortunately, the dissemination of colistin-resistant strains has increased in recent years and is considered a public health problem worldwide. Strategies to reduce resistance to antibiotics such as nanotechnology have been applied successfully. In this work, colistin was characterized physicochemically by surface tension measurements. Subsequently, nanoliposomes coated with highly deacetylated chitosan were prepared with and without colistin. The nanoliposomes were characterized using dynamic light scattering and zeta potential measurements. Both physicochemical parameters fluctuated relatively to the addition of colistin and/or polymer. The antimicrobial activity of formulations increased by four-fold against clinical isolates of susceptible Pseudomona aeruginosa but did not have antimicrobial activity against multidrug-resistant (MDR) bacteria. Interestingly, the free coated nanoliposomes exhibited the same antibacterial activity in both sensitive and MDR strains. Finally, the interaction of colistin with phospholipids was characterized using molecular dynamics (MD) simulations and determined that colistin is weakly associated with micelles constituted by zwitterionic phospholipids.


2017 ◽  
Vol 12 (11) ◽  
pp. 1934578X1701201 ◽  
Author(s):  
Jung-Eun Kim ◽  
Goo Yoon ◽  
Jung-Hyun Shim ◽  
Seung-Sik Cho

The aim of this study was to evaluate the antibacterial activity of the licochalcones A (1) and E (2) against drug resistant strains of clinical origin. The results indicate that the licochalcones had a broad inhibitory activity against tested bacteria. Compared to vancomycin and teicoplanin, these compounds provided weaker activity against non-MDR Staphylococcus aureus and Enterococcus but broader activity against MRSA and VRE strains. The results provide promising baseline information for the potential use of 1 and 2 from Glycyrrhiza inflata in the treatment of drug resistant bacterial infections.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Wu Li ◽  
Wanyan Deng ◽  
Jianping Xie

Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality globally, with nearly 10.4 million new cases of incidence and over 1.7 million deaths annually. Drug-resistant M. tuberculosis strains, especially multidrug-resistant or extensively drug-resistant strains, have further intensified the problem associated with tuberculosis control. Host-directed therapy is a promising alternative for tuberculosis control. IL-32 is increasingly recognized as an important host molecule against tuberculosis. In this review, we highlight the proinflammatory properties of IL-32 and the mode of action of IL-32 in mycobacterial infections to inspire the development of novel immunity-based countermeasures and host-directed therapies against tuberculosis.


2018 ◽  
Vol 14 ◽  
pp. 2881-2896 ◽  
Author(s):  
Laura Carro

Antibiotics are potent pharmacological weapons against bacterial infections; however, the growing antibiotic resistance of microorganisms is compromising the efficacy of the currently available pharmacotherapies. Even though antimicrobial resistance is not a new problem, antibiotic development has failed to match the growth of resistant pathogens and hence, it is highly critical to discover new anti-infective drugs with novel mechanisms of action which will help reducing the burden of multidrug-resistant microorganisms. Protein–protein interactions (PPIs) are involved in a myriad of vital cellular processes and have become an attractive target to treat diseases. Therefore, targeting PPI networks in bacteria may offer a new and unconventional point of intervention to develop novel anti-infective drugs which can combat the ever-increasing rate of multidrug-resistant bacteria. This review describes the progress achieved towards the discovery of molecules that disrupt PPI systems in bacteria for which inhibitors have been identified and whose targets could represent an alternative lead discovery strategy to obtain new anti-infective molecules.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (07) ◽  
pp. 5-19
Author(s):  
A Mohammad ◽  

Tuberculosis (TB) is one of most prevailing diseases, responsible for the morbidity and mortality of a large number of populations worldwide. Traditionally, it has relied on a limited number of drugs such as isoniazid, rifampicin, ethambutol, streptomycin, ethionamide and pyrazinamide. However, many of these drugs have different disadvantages such as prolonged duration of treatment, host toxicity and ineffectiveness against resistant strains. This has motivated the search of newer drug molecules, capable of rapid mycobactericidal action with shortened duration of therapy, reduced toxicity and enhanced activity against multidrug resistant strains. These observations have been guiding for the currently used and newly developed anti-tubercular agents that possess potent antimicrobial activity and their side effects, activity against multi drug resistant Mycobacterium, and also in patients co-infected with HIV/AIDS.


2019 ◽  
Vol 20 (6) ◽  
pp. 1255 ◽  
Author(s):  
Ana Monserrat-Martinez ◽  
Yann Gambin ◽  
Emma Sierecki

Since their discovery in the early 20th century, antibiotics have been used as the primary weapon against bacterial infections. Due to their prophylactic effect, they are also used as part of the cocktail of drugs given to treat complex diseases such as cancer or during surgery, in order to prevent infection. This has resulted in a decrease of mortality from infectious diseases and an increase in life expectancy in the last 100 years. However, as a consequence of administering antibiotics broadly to the population and sometimes misusing them, antibiotic-resistant bacteria have appeared. The emergence of resistant strains is a global health threat to humanity. Highly-resistant bacteria like Staphylococcus aureus (methicillin-resistant) or Enterococcus faecium (vancomycin-resistant) have led to complications in intensive care units, increasing medical costs and putting patient lives at risk. The appearance of these resistant strains together with the difficulty in finding new antimicrobials has alarmed the scientific community. Most of the strategies currently employed to develop new antibiotics point towards novel approaches for drug design based on prodrugs or rational design of new molecules. However, targeting crucial bacterial processes by these means will keep creating evolutionary pressure towards drug resistance. In this review, we discuss antibiotic resistance and new options for antibiotic discovery, focusing in particular on new alternatives aiming to disarm the bacteria or empower the host to avoid disease onset.


Author(s):  
Mohammed K. Almaghrabi ◽  
Martin R. P. Joseph ◽  
Mohammed M. Assiry ◽  
Mohamed E. Hamid

Objective. The study aims to determine the prevalence of multidrug-resistantA. baumanniiin Aseer Region, Kingdom of Saudi Arabia.Methods. This study evaluated the antibiotic susceptibility of ninety-four (n = 94) clinical isolates ofA. baumannii. The isolates were collected from the south region of Saudi Arabia, and notably Aseer Region, during the period from 15 October 2014 to 15 January 2015. The isolates were tentatively identified asA. baumanniiby routine bench tests and were confirmed by using VITEK® 2 Compact. The latest instrument was used to identify antibiotic susceptibility of these isolates.Results. Antibiotic susceptibility in this study showed that 69% of these isolates were multidrug-resistant strains. Moreover, they were highly resistant to carbapenem drugs. Several strains of these isolates were found to be extremely resistant to test antibiotics and were only sensitive to one or two of them.Conclusion. High rate of multidrug-resistantA. baumanniibacteraemia has emerged in the south region of Saudi Arabia as an important health problem. Therefore, it is considered as a new threat in hospitals, which requires a tremendous effort to stop its escalation and spread.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Feleke Moges ◽  
Setegn Eshetie ◽  
Mengistu Endris ◽  
Kahsay Huruy ◽  
Dagnachew Muluye ◽  
...  

Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia.Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20;Pvalues <0.005 were considered as statistically significant.Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively.Klebsiella pneumoniae32 (17.7%),Escherichia coli29 (16%), andCitrobacterspp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains;Salmonellaspp. were the leading MDR isolates (100%) followed byEnterobacter(90.5%) andShigellaspp. (76.9%).Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections.


2017 ◽  
Vol 53 (1) ◽  
pp. 38-40 ◽  
Author(s):  
Ryan Kidd ◽  
Scot Walker

Many bacterial infections can be treated with the use of antibiotics. These medications continue to reduce morbidity and mortality; unfortunately, their use has brought about drug-resistant pathogens that produce difficult-to-treat infections, which require more extreme treatments. New antibiotics are needed to combat this ever-evolving resistance pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document