P6372Does modification of activity regimes optimize the effect of high physical activity on hypertensive heart disease?

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K.-D Schluter ◽  
R Schreckenberg ◽  
A Wolf ◽  
H Kutsche ◽  
C Troidl ◽  
...  

Abstract Aims and background Spontaneously hypertensive rats (SHR) are a suitable model of essential hypertension and allow analyze the progression of hypertension and hypertension-dependent end-organ damage. In this model, acute improvement of physical activity (free running wheel activity) exerts known beneficial effects (such as lowering oxidative stress). However, these initial beneficial effects are lost during the continuation of high physical activity and translate into mal-adaptive processes, suggesting that not any high physical activity exerts beneficial effects. It has been hypothesized that the skeletal muscle release myokines, that contribute to the beneficial effects of exercise. However, myokines, such as IL-6, are induced by an acute increase in work load not by continuous work load. Therefore, we analyzed whether modification of high physical activity, i.e. intermittent free running wheel activity, modify the long-term impact on long lasting hypertension. Methods 38 female SHR aged 6 weeks (pre-hypertensive state) were randomly allocated to one of the following groups: Sedentary (S; standard holding condition) imitating the condition of sedentary life style, high activity (HA; life-long free running wheel) imitating the condition of active life style, temporary activity (TA; 6 months free running wheel and 3 months sedentary) imitating the loss of active life style during ageing, and finally intermittent activity (IA; 10 months repetitive access to running wheels every 4 weeks) imitating altered workloads. All rats were sacrificed at the age of 10 months. Results IA was the only treatment regime that effectively lowered blood pressure (P syst: 186±11 vs. 165±6 mmHg), improved ejection fraction (EF: 56±5 vs. 63±2%), and displayed clear molecular profile of adaptive myocardial hypertrophy rather than mal-adaptive hypertrophy. Moreover, only IA reduced the number of circulating monocytes (377±102 vs. 220±16 /μl), a cell population that immigrated in the left ventricle. The number of monocytes was directly correlated with the expression of MMP12, BNP, ANP, biglycan, collagen-1, actinin, β-MHC, and somatstatin but inversely related to β-adrenoceptor, Glut-4, and UCP3 expression. Finally, IA increased the skeletal expression of IL-6 and decreased the renal expression of AT1 receptors. Conclusion The data confirm the previous findings that not all type of physical activity beneficially affects hypertensive-dependent disease. In contrast, the data support the hypothesis that alterations in work load are required triggering the release of myokines from the skeletal muscle and identify the amount of circulating monocytes as a main trigger of mal-adaptive hypertrophy in these rats. The data are important with respect to optimize life style suggestions for patients with essential hypertension. Acknowledgement/Funding DFG (ERAGON and SFB 1213)

2021 ◽  
Vol 8 ◽  
Author(s):  
Rolf Schreckenberg ◽  
Annemarie Wolf ◽  
Christian Troidl ◽  
Sakine Simsekyilmaz ◽  
Klaus-Dieter Schlüter

The effect of high physical activity, performed as voluntary running wheel exercise, on inflammation and vascular adaptation may differ between normotensive and spontaneously hypertensive rats (SHRs). We investigated the effects of running wheel activity on leukocyte mobilization, neutrophil migration into the vascular wall (aorta), and transcriptional adaptation of the vascular wall and compared and combined the effects of high physical activity with that of pharmacological treatment (aldosterone antagonist spironolactone). At the start of the 6th week of life, before hypertension became established in SHRs, rats were provided with a running wheel over a period of 10-months'. To investigate to what extent training-induced changes may underlie a possible regression, controls were also generated by removal of the running wheel for the last 4 months. Aldosterone blockade was achieved upon oral administration of Spironolactone in the corresponding treatment groups for the last 4 months. The number of circulating blood cells was quantified by FACS analysis of peripheral blood. mRNA expression of selected proteins was quantified by RT-PCR. Histology and confocal laser microscopy were used to monitor cell migration. Although voluntary running wheel exercise reduced the number of circulating neutrophils in normotensive rats, it rather increased it in SHRs. Furthermore, running wheel activity in SHRs but not normotensive rats increased the number of natural killer (NK)-cells. Except of the increased expression of plasminogen activator inhibitor (PAI)-1 and reduction of von Willebrand factor (vWF), running wheel activity exerted a different transcriptional response in the vascular tissue of normotensive and hypertensive rats, i.e., lack of reduction of the pro-inflammatory IL-6 in vessels from hypertensive rats. Spironolactone reduced the number of neutrophils; however, in co-presence with high physical activity this effect was blunted. In conclusion, although high physical activity has beneficial effects in normotensive rats, this does not predict similar beneficial effects in the concomitant presence of hypertension and care has to be taken on interactions between pharmacological approaches and high physical activity in hypertensives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annemarie Wolf ◽  
Hanna Sarah Kutsche ◽  
Felix Atmanspacher ◽  
Meryem Sevval Karadedeli ◽  
Rolf Schreckenberg ◽  
...  

Obesity and hypertension are common risk factors for cardiovascular disease whereas an active lifestyle is considered as protective. However, the interaction between high physical activity and hypertension is less clear. Therefore, this study investigates the impact of high physical activity on the muscular and hepatic expression of glucose transporters (Glut), uncoupling proteins (UCPs), and proprotein convertase subtilisin/kexin type 9 (PCSK9) in spontaneously hypertensive rats (SHRs). Twenty-four female rats (12 normotensive rats and 12 SHRs) were divided into a sedentary control and an exercising group that had free access to running wheels at night for 10 months. Blood samples were taken and blood pressure was determined. The amount of visceral fat was semi-quantitatively analyzed and Musculus gastrocnemius, Musculus soleus, and the liver were excised. Acute effects of free running wheel activity were analyzed in 15 female SHRs that were sacrificed after 2 days of free running wheel activity. M. gastrocnemius and M. soleus differed in their mRNA expression of UCP-2, UCP-3, GLUT-4, and PCSK9. Hypertension was associated with lower levels of UCP-2 and PCSK9 mRNA in the M. gastrocnemius, but increased expression of GLUT-1 and GLUT-4 in the M. soleus. Exercise down-regulated UCP-3 in the M. soleus in both strains, in the M. gastrocnemius only in normotensives. In SHRs exercise downregulated the expression of UCP-2 in the M. soleus. Exercise increased the expression of GLUT-1 in the M. gastrocnemius in both strains, and that of GLUT-4 protein in the M. soleus, whereas it increased the muscle-specific expression of PCSK9 only in normotensive rats. Effects of exercise on the hepatic expression of cholesterol transporters were seen only in SHRs. As an acute response to exercise increased expressions of the myokine IL-6 and that of GLUT-1 were found in the muscles. This study, based on transcriptional adaptations in striated muscles and livers, shows that rats perform long-term metabolic adaptations when kept with increased physical activity. These adaptations are at least in part required to stabilize normal protein expression as protein turnover seems to be modified by exercise. However, normotensive and hypertensive rats differed in their responsiveness. Based on these results, a direct translation from normotensive to hypertensive rats is not possible. As genetic differences between normotensive humans and patients with essential hypertension are likely to be present as well, we would expect similar differences in humans that may impact recommendations for non-pharmacological interventions.


Author(s):  
Mark Hargreaves

Since ancient times, the health benefits of regular physical activity/exercise have been recognised and the classic studies of Morris and Paffenbarger provided the epidemiological evidence in support of such an association. Cardiorespiratory fitness, often measured by maximal oxygen uptake, and habitual physical activity levels are inversely related to mortality. Thus, studies exploring the biological bases of the health benefits of exercise have largely focused on the cardiovascular system and skeletal muscle (mass and metabolism), although there is increasing evidence that multiple tissues and organ systems are influenced by regular exercise. Communication between contracting skeletal muscle and multiple organs has been implicated in exercise benefits, as indeed has other inter-organ "cross-talk". The application of molecular biology techniques and 'omics' approaches to questions in exercise biology has opened new lines of investigation to better understand the beneficial effects of exercise and, in so doing, inform the optimisation of exercise regimens and the identification of novel therapeutic strategies to enhance health and well-being.


Coronaviruses ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Alessia Catalano

The ongoing Coronavirus disease 2019 (COVID-19) outbreak in China has become the world's leading health headline and is causing major panic and public concerns. After emerging in the City of Wuhan, China, COVID-19 has spread to several countries becoming a worldwide pandemia. Among the studies on COVID-19, it has been demonstrated that novel coronavirus pneumonia is closely associated with inflammatory storms. Controlling the inflammatory response may be as important as targeting the virus. Irisin is a muscle-contraction-induced immunomodulatory myokine related to physical activity. Irisin drives the “browning” of white adipocytes, so enhancing metabolic uncoupling and hence caloric expenditure. Irisin has been clearly shown to be a handyman molecule by exerting beneficial effects on adipose tissues, pancreas, and bone through “cross-talk” between skeletal muscleadipocyte, skeletal muscle-pancreas, and skeletal muscle-bone, respectively. Irisin has been proposed as a promising strategy for early diagnosis and treatment of various types of cancers, neurological diseases and inflammatory conditions. Irisin has been demonstrated to suppress the immune response, too. The importance of irisin is demonstrated by the increase in the number of scientific papers and patents in recent years. The identification of irisin receptor should greatly facilitate the understanding of irisin’s function in exercise and human health. This review examines the structure and recent advances in activities of irisin, suggesting it for further studies on the prevention and cure of COVID-19. Nowadays, studies on irisin plasma levels and physical activity may be useful tools to further investigate the prevention of COVID-19. Irisin may be suggested as a potential novel intervention for COVID-19 by mitigating inflammatory storms, suppressing the immune response and simultaneously alleviating neurological disorders such as depression and anxiety.


2005 ◽  
Vol 22 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Michael J. Turner ◽  
Steven R. Kleeberger ◽  
J. Timothy Lightfoot

In humans, physical activity declines with age. We tested the hypothesis that genetic background and age interact to determine daily wheel-running physical activity patterns in mice. Five female mice from ten inbred strains (A/J, AKR/J, Balb/cJ, CBA/J, C3H/HeJ, C3Heb/FeJ, C57Bl/6J, C57L/J, DBA/2J, and SWR/J) were studied for 26 wk starting at 10 wk of age. All mice were housed in separate cages, each with a running wheel and magnetic sensor. Throughout the 26-wk period, age-related change in daily duration ( P < 0.0001), daily distance ( P < 0.0001), and average velocity ( P = 0.0003) differed between the inbred strains. Unlike the other strains, SWR/J mice increased their running-wheel activity throughout the 6-mo time period. Broad-sense heritability estimations for the strains across the 26-wk period ranged between 0.410 and 0.855 for the three physical activity phenotypes. Furthermore, the broad-sense heritability estimates for daily running-wheel distance differed across time and suggested an interaction between genetic background and age on physical activity in these inbred mice.


2016 ◽  
Vol 10 (2) ◽  
pp. 8-18 ◽  
Author(s):  
Aleš Sekot

Purpose of the contribution is related to the fundamental feature of sedentary consumerist society strongly diminishing role and importance of physical activity in everyday life. At the same time sportive physical activity is also very important factor in the process of officiating of the level of healthy and active life style, quality of life and health in general. Method to study position of physical activity in sedentary society is based on discussion of relevent concepts and consequent presentation of most typical conclusions of sociological research relating to levels of physical activity (inactivity) of Czech inhabitants. Sedentary society is confronted with great decline of physical activity at work, households and in transportation. Active transportation, as an indispensable part of healthy active way of life refers to the most reasonable human-powered transportation – walking and cycling. Results of the great emprical research “Physical activity of Czech population“ concluded that most respondents prefer „inactive ways of transportation“ (cars, public transportation system); only less that one quarter of respondents use active ways of transportation (walking, biking). Men are more interested in biking, women in walking. In the Czech cultural setting changing attitude to physical activity as an integral part of everyday active life style is resulting from the changing social structure, in particular the newly establishing middle-class as well from prevalent cultural changes.


1991 ◽  
Vol 50 (2) ◽  
pp. 373-378 ◽  
Author(s):  
Dale M. Edgar ◽  
Thomas S. Kilduff ◽  
Connie E. Martin ◽  
William C. Dement

2021 ◽  
Vol 13 ◽  
Author(s):  
Hiroyuki Umegaki ◽  
Takashi Sakurai ◽  
Hidenori Arai

A growing body of evidence clearly indicates the beneficial effects of physical activity (PA) on cognition. The importance of PA is now being reevaluated due to the increase in sedentary behavior in older adults during the COVID-19 pandemic. Although many studies in humans have revealed that PA helps to preserve brain health, the underlying mechanisms have not yet been fully elucidated. In this review, which mainly focuses on studies in humans, we comprehensively summarize the mechanisms underlying the beneficial effects of PA or exercise on brain health, particularly cognition. The most intensively studied mechanisms of the beneficial effects of PA involve an increase in brain-derived neurotrophic factor (BDNF) and preservation of brain volume, especially that of the hippocampus. Nonetheless, the mutual associations between these two factors remain unclear. For example, although BDNF presumably affects brain volume by inhibiting neuronal death and/or increasing neurogenesis, human data on this issue are scarce. It also remains to be determined whether PA modulates amyloid and tau metabolism. However, recent advances in blood-based biomarkers are expected to help elucidate the beneficial effects of PA on the brain. Clinical data suggest that PA functionally modulates cognition independently of neurodegeneration, and the mechanisms involved include modulation of functional connectivity, neuronal compensation, neuronal resource allocation, and neuronal efficiency. However, these mechanisms are as yet not fully understood. A clear understanding of the mechanisms involved could help motivate inactive persons to change their behavior. More accumulation of evidence in this field is awaited.


2008 ◽  
Vol 93 (6) ◽  
pp. 754-762 ◽  
Author(s):  
Kirsten Legerlotz ◽  
Bradley Elliott ◽  
Bernard Guillemin ◽  
Heather K. Smith

Sign in / Sign up

Export Citation Format

Share Document