scholarly journals 695 Upregulated monocyte expression of PLIN2 is associated with plaque instability in coronary artery disease

2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Francesco Canonico ◽  
Anna Severino ◽  
Massimiliano Camilli ◽  
Stefano Migliaro ◽  
Ramona Vinci ◽  
...  

Abstract Aims Perilipin 2 (PLIN2), a protein associated with intracellular lipid droplets (LDs), is involved in lipid metabolism of macrophages resident in atherosclerotic plaques and its up-regulation leads to LDs accumulation. LDs enlargement results in the macrophage transformation into foam cells, a key step for the onset of atherosclerosis. In the present study, we investigated the role of PLIN2 and its regulation mechanisms in atherosclerosis and plaque instability in patients with a diagnosis of ST-elevation myocardial infarction (STEMI) and stable chronic angina (SA). Methods and results We enrolled 120 patients with a diagnosis of STEMI and 42 SA patients with symptoms of stable effort angina lasting more than 12 months. Peripheral blood mononuclear cells (PBMCs) were isolated from EDTA whole blood samples through standard gradient centrifugation over Ficoll-Hypaque. Monocytes were purified through indirect magnetic labelling of PBMCs. PLIN2 mRNA expression was investigated by Real Time-PCR and PLIN2 protein level was analysed in CD14+ monocytes by flow cytometry. Proteasome activity was assayed using AMC-tagged peptide substrate (Succ-LLVY-AMC), which releases free highly fluorescent AMC (Ex/Em 350/440 nm) in the presence of proteolytic activity. In CD14+ monocyte, PLIN2 protein expression was significantly increased in STEMI as compared to SA patients (P < 0.001), while PLIN2 mRNA level was not different in the two groups (P = n.s.). Despite proteasome activity was higher in STEMI as compared to SA patients (P < 0.001), significant inverse correlations were evident between PLIN2 levels and proteasome activity in the two groups (P = 0.05). Conclusions CD14+ monocyte PLIN2 protein expression was higher in STEMI as compared to SA patients suggesting an involvement in plaque instability. Despite proteasome activity was higher in STEMI patients, probably due to the elevated inflammatory burden, PLIN2 could escape proteasome degradation in a more efficient manner in STEMI as compared to SA patients.

2019 ◽  
Vol 19 (6) ◽  
pp. 809-817
Author(s):  
Sevgi Irtegun-Kandemir ◽  
Irmak Icen-Taskin ◽  
Mehtap Bozkurt ◽  
Sevgi Kalkanli-Tas

Background: Behcet’s Disease (BD) is a multisystemic inflammatory disorder affecting large vessels, lungs joints, gastrointestinal and neurological systems. The pathogenesis of BD remains poorly understood. Identifying the key signaling pathway is crucial for a complete understanding of the pathogenesis of BD. Objective: The aim of this study was to determine mRNA expression level of Src family kinases (SFKs) members and their involvement in lipopolysaccharide (LPS)-induced mitogen-activated protein kinases (MAPKs) regulation in peripheral blood mononuclear cells (PBMCs) of active BD patients. Methods: Twenty- five active BD patients and twenty-five healthy controls were included in the study. PBMCs were isolated from total blood by density gradient centrifugation. The mRNA expression levels of SFKs members were measured by real-time quantitative PCR (RT-qPCR). The effect of SFKs activity on LPS-induced activation MAPKs (Erk1/2, p38 and JNK) was examined by Western blot. Results: The mRNA expression levels of Hck, Src, Lyn, Yes and Fyn were found to be slightly decreased in active BD patients compared to the control subjects, but a slight change in mRNA level of SFKs members did not impact on protein levels and protein activity. LPS-induced Erk1/2 phosphorylation was significantly increased in the absence of SFKs activity in active BD patients. However, inhibition of SFKs activity had no effect on LPS-induced phosphorylation of p38 and JNK in both controls and active BD patients. Conclusion: SFKs downregulate LPS-induced Erk1/2 phosphorylation in PBMCs of active BD patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria D. I. Manunta ◽  
Giuseppe Lamorte ◽  
Francesca Ferrari ◽  
Elena Trombetta ◽  
Mario Tirone ◽  
...  

AbstractSARS-CoV-2 virus infection is responsible for coronavirus disease (COVID-19), which is characterised by a hyperinflammatory response that plays a major role in determining the respiratory and immune-mediated complications of this condition. While isolating peripheral blood mononuclear cells (PBMCs) from whole blood of COVID-19 patients by density gradient centrifugation, we noticed some changes in the floating properties and in the sedimentation of the cells on density medium. Investigating this further, we found that in early phase COVID-19 patients, characterised by reduced circulating lymphocytes and monocytes, the PBMC fraction contained surprisingly high levels of neutrophils. Furthermore, the neutrophil population exhibited alterations in the cell size and in the internal complexity, consistent with the presence of low density neutrophils (LDNs) and immature forms, which may explain the shift seen in the floating abilities and that may be predictive of the severity of the disease. The percentage of this subset of neutrophils found in the PBMC band was rather spread (35.4 ± 27.2%, with a median 28.8% and IQR 11.6–56.1, Welch’s t-test early phase COVID-19 versus blood donor healthy controls P < 0.0001). Results confirm the presence of an increased number of LDNs in patients with early stage COVID-19, which correlates with disease severity and may be recovered by centrifugation on a density gradient together with PBMCs.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Hu ◽  
Xiaoqian Shang ◽  
Liang Wang ◽  
Jiahui Fan ◽  
Yue Wang ◽  
...  

Abstract Aim Brucellar spondylitis (BS) is one of the most serious complications of brucellosis. CXCR3 is closely related to the severity of disease infection. This research aimed to study the degree of BS inflammatory damage through analyzing the expression levels of CXCR3 and its ligands (CXCL9 and CXCL10) in patients with BS. Methods A total of 29 BS patients and 15 healthy controls were enrolled. Real-Time PCR was used to detect the mRNA expression levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood mononuclear cells (PBMCs) of BS patients and healthy controls. Hematoxylin-Eosin staining was used to show the pathological changes in BS lesion tissues. Immunohistochemistry staining was used to show the protein expression levels of Brucella-Ab, IFN-γ, CXCR3, CXCL9 and CXCL10 in BS lesion tissues. At the same time, ELISA was used to detect the serum levels of IFN-γ, CXCL9 CXCL10 and autoantibodies against CXCR3 in patients with BS. Results In lesion tissue of BS patients, it showed necrosis of cartilage, acute or chronic inflammatory infiltration. Brucella-Ab protein was abundantly expressed in close lesion tissue. And the protein expression levels of IFN-γ, CXCR3 and CXCL10 were highly expressed in close lesion tissue and serum of BS patients. At the same time, the mRNA expression levels of IFN-γ, CXCR3 and CXCL10 in PBMCs of BS patients were significantly higher than those in controls. Conclusion In our research, the expression levels of IFN-γ, CXCR3 and its ligands were significantly higher than those in controls. It suggested that high expression levels of IFN-γ, CXCR3 and its ligands indicated a serious inflammatory damage in patients with BS.


VASA ◽  
2021 ◽  
Author(s):  
Kangbo Li ◽  
Claudia Zemmrich ◽  
Peter Bramlage ◽  
Anja Bondke Persson ◽  
Mesud Sacirovic ◽  
...  

Summary: Background: Angiotensin-converting-enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) are widely used as a first-line therapy for the treatment of cardiovascular disease. Here, ACEI modulate the bradykinin receptor (BDKRB1 and BDKRB2) system and NO-dependent endothelial function, thus determining cardiovascular health and regenerative arteriogenesis. The current study aims at evaluating nitric oxide-dependent endothelial function, and gene expression of bradykinin receptors in peripheral blood mononuclear cells (PBMC) from patients with ACEI or ARB treatment. Patients and methods: The WalkByLab has been established to screen cardiovascular patients for peripheral artery disease and coronary artery disease. In total 177 patients from WalkByLab with heterogenous disease and risk status were randomly selected, divided according to their medication history into the following groups: 1. ACEI group, 2. ARB group or 3. non-ACE/ARB group. Total plasma nitrite/nitrate (NO) levels were measured, endothelial function was evaluated by assessing flow meditated dilation (FMD). PBMC were isolated from peripheral whole blood, and gene expression (qRT-PCR) of bradykinin receptors and angiotensin converting enzyme were assessed. Results: Plasma total NO concentration in the ACEI group (24.66±16.28, µmol/l) was increased as compared to the ARB group (18.57±11.58, µmol/l, P=0.0046) and non-ACE/ARB group (16.83±8.64, µmol/l, P=0.0127) in patients between 40 to 90 years of age. However, FMD values (%) in the ACEI group (7.07±2.40, %) were similar as compared to the ARB (6.35±2.13, %) and non-ACE/ARB group (6.51±2.15, %), but significantly negatively correlated with age. Interestingly, BDKRB1 mRNA level was significantly higher and BDKRB2 mRNA level lower in the ACEI group (BDKRB1 3.88-fold±1.05, BDKRB2 0.22-fold±0.04) as compared to the non-ACE/ARB group (BDKRB1 1.00-fold±0.39, P<0.0001, BDKRB2 1.00-fold±0.45, P=0.0136). Conclusions: ACEI treatment enhances total nitrite/nitrate concentration, furthermore, upregulates BDKRB1 in PBMC, but downregulates BDKRB2 mRNA expression. FMD is a strong determinant of vascular aging and is sensitive to underlying heterogenous cardiovascular diseases.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Marlies P Noz ◽  
Siroon Bekkering ◽  
Laszlo Groh ◽  
Tim MJ Nielen ◽  
Evert JP Lamfers ◽  
...  

Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and monocyte-related pathways. These results show that in patients with atherosclerosis, activation of innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities for novel treatment strategies.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Melinda S Schaller ◽  
Laura Menke ◽  
Mian Chen ◽  
Warren J Gasper ◽  
S. Marlene Grenon ◽  
...  

Introduction: Peripheral arterial disease (PAD) is a chronic disease characterized by systemic inflammation. Monocytes (Mo) and macrophages play a central role in vascular inflammation and its resolution. We hypothesize that impaired resolution in PAD results in poor clinical outcomes. Methods: Resolution phenotype was assessed by phagocytic activity of leukocytes, Mo cell surface markers, and cytokine profiling of Mo-derived macrophages (MDM). Phagocytosis and cell-surface markers were determined by flow cytometry. MDMs were generated from peripheral blood mononuclear cells via density gradient centrifugation. Cytokines were measured by ELISA following MDM differentiation and subsequent stimulation with LPS. Results: Circulating Mo and neutrophils (PMN) isolated from PAD patients (n=9) demonstrated significantly lower phagocytic activity (Mo: >30%, p<.001; PMN: >25%, p<.01, Fig. 1) as compared to healthy subjects (HS) (n=14). Cell-surface marker analysis demonstrated a higher proportion of the pro-inflammatory intermediate Mo subset (CD14 ++ 16 + , 1.8-fold, p=.04) in PAD compared to HS. MDM from PAD subjects retain their intrinsic inflammatory program by producing more IL-6 (PAD 3138±2676 ng/mL, HS 731±854 ng/mL p=.03) and IL-1β (PAD 244±236 ng/mL, HS 24.1±23.8 ng/mL p=.04) than those from HS. Upon stimulation with LPS, MDM from PAD subjects secrete more IL-6 (PAD 23353±22483 ng/mL, HS 5097±5836 ng/mL p=.05) than those from HS. Conclusions: Circulating Mo and PMN in patients with PAD have substantially lower phagocytic activity as well as a greater proportion of the pro-inflammatory intermediate Mo subset compared to HS. MDM preserve their elevated inflammatory state throughout culture and retain a heightened response upon latter stimulatory cues. Collectively these data demonstrate a heightened inflammatory and impaired resolution phenotype in PAD that has potential implications for disease progression and response to interventions.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Mingjiao Zhang ◽  
Hongyu Jie ◽  
Yong Wu ◽  
Xinai Han ◽  
Xing Li ◽  
...  

Abstract Background Necroptosis is a form of regulated necrosis that is involved in various autoimmune diseases. Mixed lineage kinase domain-like pseudokinase (MLKL) has been identified as a key executor of necroptosis; however, the significance of MLKL in peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematosus (SLE) has not been investigated. In this study, we aimed to determine the mRNA level of MLKL in PBMCs and examine its relationship with clinical features and serological parameters in SLE. Methods Real-time transcription-polymerase chain reaction (RT-PCR) analysis was used to determine the expression of MLKL mRNA in PBMCs from 59 patients with SLE, 25 patients with rheumatoid arthritis (RA), and 30 age- and sex-matched healthy controls (HC). Spearman’s correlation test was performed to assess the correlation of MLKL mRNA with clinical variables. The receiver operating characteristic (ROC) curve was created to evaluate the diagnostic value. Results Our results showed MLKL mRNA in PBMCs was upregulated in SLE patients compared to that in RA and HC individuals. SLE patients positive for antinuclear antibodies had significantly higher MLKL mRNA than antibody-negative patients. In SLE patients, MLKL mRNA was found to be upregulated in patients with lupus nephritis (LN) as compared with patients without LN, and also higher in active patients than in stable patients. MLKL mRNA level was significantly and positively correlated with c-reaction protein (CRP) (r = 0.3577, p = 0.0237), erythrocyte sedimentation rate (ESR) (r = 0.4091, p = 0.0043), serum immunoglobulin G (IgG) concentration (r = 0.3546, p = 0.0289), and the numbers of positive antinuclear antibodies (ANAs) (r = 0.3945, p = 0.0432). ROC analysis showed that MLKL mRNA in PBMCs had an area under the curve of 0.9277 (95% CI 0.8779–0.9775, p < 0.001) to discriminate SLE from controls. Conclusions These results suggest that increased MLKL mRNA level in the PBMCs of SLE patients is correlated with renal involvement and disease activity, identifying a subgroup of patients with SLE or LN who may benefit from early diagnosis and therapies targeting MLKL.


Sign in / Sign up

Export Citation Format

Share Document