Structurally complex carbohydrates maintain diversity in gut-derived microbial consortia under high dilution pressure

2020 ◽  
Vol 96 (9) ◽  
Author(s):  
Tianming Yao ◽  
Ming-Hsu Chen ◽  
Stephen R Lindemann

ABSTRACT Dietary fibers are major substrates for maintaining and shaping gut microbiota, but the structural specificity of these fibers for the diversity, structure and function of gut microbiota are poorly understood. Here, we employed an in vitro sequential batch fecal culture approach to address two ecological questions: (i) whether the chemical complexity of a carbohydrate influences its ability to maintain microbial diversity against high dilution pressure (ii) whether substrate structuring or obligate microbe-microbe metabolic interactions (e.g. exchange of amino acids or vitamins) exert more influence on maintained diversity. Sorghum arabinoxylan (SAX, a complex polysaccharide), inulin (a low-complexity oligosaccharide) and their corresponding monosaccharide controls were selected as model carbohydrates. Our results demonstrate that complex carbohydrates stably sustain diverse microbial consortia. Furthermore, other metabolic interactions were less influential in structuring microbial consortia consuming SAX than inulin. Finally, very similar final consortia were enriched on SAX from the same individual's fecal microbiota one month later, suggesting that polysaccharide structure is more influential than stochastic alterations in microbiome composition in governing the outcomes of sequential batch cultivation experiments. These data suggest that carbohydrate structural complexity affords independent niches that structure fermenting microbial consortia, whereas other metabolic interactions govern the composition of communities fermenting simpler carbohydrates.

2020 ◽  
Author(s):  
Tianming Yao ◽  
Ming-Hsu Chen ◽  
Stephen R. Lindemann

ABSTRACTDietary fibers are major substrates for the colonic microbiota, but the structural specificity of these fibers for the diversity, structure, and function of gut microbial communities are poorly understood. Here, we employed an in vitro sequential batch fecal culture approach to determine: 1) whether the chemical complexity of a carbohydrate structure influences its ability to maintain microbial diversity in the face of high dilution pressure and 2) whether substrate structuring or obligate microbe-microbe metabolic interactions (e.g. exchange of amino acids or vitamins) exert more influence on maintained diversity. Sorghum arabinoxylan (SAX, complex polysaccharide), inulin (low-complexity oligosaccharide) and their corresponding monosaccharide controls were selected as model carbohydrates. Our results demonstrate that complex carbohydrates stably sustain diverse microbial consortia. Further, very similar final consortia were enriched on SAX from the same individual’s fecal microbiota across a one-month interval, suggesting that polysaccharide structure is more influential than stochastic alterations in microbiome composition in governing the outcomes of sequential batch cultivation experiments. SAX-consuming consortia were anchored by Bacteroides ovatus and retained diverse consortia of >12 OTUs; whereas final inulin-consuming consortia were dominated either by Klebsiella pneumoniae or Bifidobacterium sp. and Escherichia coli. Furthermore, auxotrophic interactions were less influential in structuring microbial consortia consuming SAX than the less-complex inulin. These data suggest that carbohydrate structural complexity affords independent niches that structure fermenting microbial consortia, whereas other metabolic interactions govern the composition of communities fermenting simpler carbohydrates.IMPORTANCEThe mechanisms by which gut microorganisms compete for and cooperate on human-indigestible carbohydrates of varying structural complexity remain unclear. Gaps in this understanding make it challenging to predict the effect of a particular dietary fiber’s structure on the diversity, composition, or function of gut microbiomes, especially with inter-individual variability in diets and microbiomes. Here, we demonstrate that carbohydrate structure governs the diversity of gut microbiota under high dilution pressure, suggesting that such structures may support microbial diversity in vivo. Further, we also demonstrate that carbohydrate polymers are not equivalent in the strength by which they influence community structure and function, and that metabolic interactions among members arising due to auxotrophy exert significant influence on the outcomes of these competitions for simpler polymers. Collectively, these data suggest that large, complex dietary fiber polysaccharides structure the human gut ecosystem in ways that smaller and simpler ones may not.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3194
Author(s):  
Jing Wang ◽  
Yong Chen ◽  
Xiaosong Hu ◽  
Fengqin Feng ◽  
Luyun Cai ◽  
...  

The beneficial effects of ginger polyphenols have been extensively reported. However, their metabolic characteristics and health effects on gut microbiota are poor understood. The purpose of this study was to investigate the digestion stability of ginger polyphenols and their prebiotic effects on gut microbiota by simulating digestion and fermentation in vitro. Following simulated digestion in vitro, 85% of the polyphenols were still detectable, and the main polyphenol constituents identified in ginger extract are 6-, 8-, and 10-gingerols and 6-shogaol in the digestive fluids. After batch fermentation, the changes in microbial populations were measured by 16S rRNA gene Illumina MiSeq sequencing. In mixed-culture fermentation with fecal inoculate, digested ginger extract (GE) significantly modulated the fecal microbiota structure and promoted the growth of some beneficial bacterial populations, such as Bifidobacterium and Enterococcus. Furthermore, incubation with GE could elevate the levels of short-chain fatty acids (SCFAs) accompanied by a decrease in the pH value. Additionally, the quantitative PCR results showed that 6-gingerol (6G), as the main polyphenol in GE, increased the abundance of Bifidobacterium significantly. Therefore, 6G is expected to be a potential prebiotic that improves human health by promoting gut health.


2019 ◽  
Vol 20 (8) ◽  
pp. 1925 ◽  
Author(s):  
Tsitko ◽  
Wiik-Miettinen ◽  
Mattila ◽  
Rosa-Sibakov ◽  
Maukonen ◽  
...  

The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 137-138
Author(s):  
X Bai ◽  
G De Palma ◽  
J Lu ◽  
S M Collins ◽  
P Bercik

Abstract Background Increasing evidence suggests that gut microbiota play a key role in gastrointestinal (GI) tract function. We have previously shown that fecal microbiota transplantation diarrhea predominant IBS patients into germ-free mice induces faster GI transit, increased permeability and innate immune activation. However, it is unknown whether gut dysfunction is induced by microbiota from patients with chronic constipation. Aims Here, we investigated the role of the intestinal microbiota in the expression of severe slow transit constipation in a patient with previous C difficile infection and extensive antibiotic exposure. Methods Germ-free (GF) mice (14 weeks old) were gavaged with diluted fecal content from the patient with constipation (PA) or a sex and age-matched healthy control (HC). 12 weeks later, we assessed gut motility and GI transit using videofluoroscopy and a bead expulsion test.. We then investigated intestinal and colonic smooth muscle isometric contraction in vitro using electric field stimulation (EFS), and acetylcholine (Ach) release was assessed by superfusion using [3H] choline. Histological changes were evaluated by H&E and immunohistochemistry. Results Mice with PA microbiota had faster whole GI transit (score 18.9 ± 0.9 (N=9) than mice with HC microbiota (15.4 ± 1.0, N=10, p=0.032), with markers located mainly in the distal small bowel and cecum. However, bead expulsion from the colon was significantly longer in PA mice (420.8 s ± 124.6 s, N=9) than in HC mice (82.6 s ± 20.0 s, N=10, p=0.026). This delayed colonic transit was likely due to colonic retroperistalsis visualized videofluoroscopically by retrograde flow of barium in the right colon of PA mice. There was no difference between the two groups in small intestinal or colonic tissues in Ach release or contractility induced by carbachol or KCl,. EFS caused transient biphasic relaxation and contraction in small intestine and colon, with the colonic contraction being stronger in the PA group. Microscopic tissue analysis showed disruption of the interstitial cells of Cajal (ICC) network and increased lymphocyte infiltration in colonic mucosa and submucosa in PA mice. Conclusions These results indicate that the microbiota is a driver of delayed colonic transit in a patient whose constipation started following extensive antibiotic exposure for C. difficile infection. The observed dysmotility pattern was not due to lower muscle contractility but likely caused by immune mediated changes in the ICC network. Funding Agencies CIHR


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1802 ◽  
Author(s):  
Natalie Ahlborn ◽  
Wayne Young ◽  
Jane Mullaney ◽  
Linda M. Samuelsson

While human milk is the optimal food for infants, formulas that contain ruminant milk can have an important role where breastfeeding is not possible. In this regard, cow milk is most commonly used. However, recent years have brought interest in other ruminant milk. While many similarities exist between ruminant milk, there are likely enough compositional differences to promote different effects in the infant. This may include effects on different bacteria in the large bowel, leading to different metabolites in the gut. In this study sheep and cow milk were digested using an in vitro infant digestive model, followed by fecal fermentation using cultures inoculated with fecal material from two infants of one month and five months of age. The effects of the cow and sheep milk on the fecal microbiota, short-chain fatty acids (SCFA), and other metabolites were investigated. Significant differences in microbial, SCFA, and metabolite composition were observed between fermentation of sheep and cow milk using fecal inoculum from a one-month-old infant, but comparatively minimal differences using fecal inoculum from a five-month-old infant. These results show that sheep milk and cow milk can have differential effects on the gut microbiota, while demonstrating the individuality of the gut microbiome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao-Ming Xu ◽  
Hong-Li Huang ◽  
Jing Xu ◽  
Jie He ◽  
Chong Zhao ◽  
...  

Fecal microbiota transplantation (FMT) can inhibit the progression of ulcerative colitis (UC). However, how FMT modulates the gut microbiota and which biomarker is valuable for evaluating the efficacy of FMT have not been clarified. This study aimed to determine the changes in the gut microbiota and their relationship with butyric acid following FMT for UC. Fecal microbiota (FM) was isolated from healthy individuals or mice and transplanted into 12 UC patients or colitis mice induced by dextran sulfate sodium (DSS). Their clinical colitis severities were monitored. Their gut microbiota were analyzed by 16S sequencing and bioinformatics. The levels of fecal short-chain fatty acids (SCFAs) from five UC patients with recurrent symptoms after FMT and individual mice were quantified by liquid chromatography–mass spectrometry (LC–MS). The impact of butyric acid on the abundance and diversity of the gut microbiota was tested in vitro. The effect of the combination of butyric acid-producing bacterium and FMT on the clinical responses of 45 UC patients was retrospectively analyzed. Compared with that in the controls, the FMT significantly increased the abundance of butyric acid-producing bacteria and fecal butyric acid levels in UC patients. The FMT significantly increased the α-diversity, changed gut microbial structure, and elevated fecal butyric acid levels in colitis mice. Anaerobic culture with butyrate significantly increased the α-diversity of the gut microbiota from colitis mice and changed their structure. FMT combination with Clostridium butyricum-containing probiotics significantly prolonged the UC remission in the clinic. Therefore, fecal butyric acid level may be a biomarker for evaluating the efficacy of FMT for UC, and addition of butyrate-producing bacteria may prolong the therapeutic effect of FMT on UC by changing the gut microbiota.


2014 ◽  
Vol 80 (19) ◽  
pp. 5935-5943 ◽  
Author(s):  
Heetae Lee ◽  
GwangPyo Ko

ABSTRACTMetformin is commonly used as the first line of medication for the treatment of metabolic syndromes, such as obesity and type 2 diabetes (T2D). Recently, metformin-induced changes in the gut microbiota have been reported; however, the relationship between metformin treatment and the gut microbiota remains unclear. In this study, the composition of the gut microbiota was investigated using a mouse model of high-fat-diet (HFD)-induced obesity with and without metformin treatment. As expected, metformin treatment improved markers of metabolic disorders, including serum glucose levels, body weight, and total cholesterol levels. Moreover,Akkermansia muciniphila(12.44% ± 5.26%) andClostridium cocleatum(0.10% ± 0.09%) abundances increased significantly after metformin treatment of mice on the HFD. The relative abundance ofA. muciniphilain the fecal microbiota was also found to increase in brain heart infusion (BHI) medium supplemented with metforminin vitro. In addition to the changes in the microbiota associated with metformin treatment, when other influences were controlled for, a total of 18 KEGG metabolic pathways (including those for sphingolipid and fatty acid metabolism) were significantly upregulated in the gut microbiota during metformin treatment of mice on an HFD. Our results demonstrate that the gut microbiota and their metabolic pathways are influenced by metformin treatment.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Xuelian Tang ◽  
Weijun Wang ◽  
Gaichao Hong ◽  
Caihan Duan ◽  
Siran Zhu ◽  
...  

Abstract Background and aims Previous study disclosed Fucosyltransferase 2 (Fut2) gene as a IBD risk locus. This study aimed to explore the mechanism of Fut2 in IBD susceptibility and to propose a new strategy for the treatment of IBD. Methods Intestinal epithelium-specific Fut2 knockout (Fut2△IEC) mice was used. Colitis was induced by dextran sulfate sodium (DSS). The composition and diversity of gut microbiota were assessed via 16S rRNA analysis and the metabolomic findings was obtained from mice feces via metabolite profiling. The fecal microbiota transplantation (FMT) experiment was performed to confirm the association of gut microbiota and LPC. WT mice were treated with Lysophosphatidylcholine (LPC) to verify its impact on colitis. Results The expression of Fut2 and α-1,2-fucosylation in colonic tissues were decreased in patients with UC (UC vs. control, P = 0.036) and CD (CD vs. control, P = 0.031). When treated with DSS, in comparison to WT mice, more severe intestinal inflammation and destructive barrier functions in Fut2△IEC mice was noted. Lower gut microbiota diversity was observed in Fut2△IEC mice compared with WT mice (p < 0.001). When exposed to DSS, gut bacterial diversity and composition altered obviously in Fut2△IEC mice and the fecal concentration of LPC was increased. FMT experiment revealed that mice received the fecal microbiota from Fut2△IEC mice exhibited more severe colitis and higher fecal LPC concentration. Correlation analysis showed that the concentration of LPC was positively correlated with four bacteria—Escherichia, Bilophila, Enterorhabdus and Gordonibacter. Furthermore, LPC was proved to promote the release of pro-inflammatory cytokines and damage epithelial barrier in vitro and in vivo. Conclusion Fut2 and α-1,2-fucosylation in colon were decreased not only in CD but also in UC patients. Gut microbiota in Fut2△IEC mice is altered structurally and functionally, promoting generation of LPC which was proved to promote inflammation and damage epithelial barrier.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Kaitlyn Oliphant ◽  
Kyla Cochrane ◽  
Kathleen Schroeter ◽  
Michelle C. Daigneault ◽  
Sandi Yen ◽  
...  

ABSTRACT Fecal microbiota transplantation (FMT) is a proposedly useful strategy for the treatment of gastrointestinal (GI) disorders through remediation of the patient gut microbiota. However, its therapeutic success has been variable, necessitating research to uncover mechanisms that improve patient response. Antibiotic pretreatment has been proposed as one method to enhance the success rate by increasing niche availability for introduced species. Several limitations hinder exploring this hypothesis in clinical studies, such as deleterious side effects and the development of antimicrobial resistance in patients. Thus, the purpose of this study was to evaluate the use of an in vitro, bioreactor-based, colonic ecosystem model as a form of preclinical testing by determining how pretreatment with the antibiotic rifaximin influenced engraftment of bacterial strains sourced from a healthy donor into an ulcerative colitis-derived defined microbial community. Distinct species integrated under the pretreated and untreated conditions, with the relative rifaximin resistance of the microbial strains being an important influencer. However, both conditions resulted in the integration of taxa from Clostridium clusters IV and XIVa, a concomitant reduction of Proteobacteria, and similar decreases in metabolites associated with poor health status. Our results agree with the findings of similar research in the clinic by others, which observed no difference in primary patient outcomes whether or not patients were given rifaximin prior to FMT. We therefore conclude that our model is useful for screening for antibiotics that could improve efficacy of FMT when used as a pretreatment. IMPORTANCE Patients with gastrointestinal disorders often exhibit derangements in their gut microbiota, which can exacerbate their symptoms. Replenishing these ecosystems with beneficial bacteria through fecal microbiota transplantation is thus a proposedly useful therapeutic; however, clinical success has varied, necessitating research into strategies to improve outcomes. Antibiotic pretreatment has been suggested as one such approach, but concerns over harmful side effects have hindered testing this hypothesis clinically. Here, we evaluate the use of bioreactors supporting defined microbial communities derived from human fecal samples as models of the colonic microbiota in determining the effectiveness of antibiotic pretreatment. We found that relative antimicrobial resistance was a key determinant of successful microbial engraftment with rifaximin (broad-spectrum antibiotic) pretreatment, despite careful timing of the application of the therapeutic agents, resulting in distinct species profiles from those of the control but with similar overall outcomes. Our model had results comparable to the clinical findings and thus can be used to screen for useful antibiotics.


Sign in / Sign up

Export Citation Format

Share Document