scholarly journals Involvement of RNA granule proteins in meiotic silencing by unpaired DNA

Author(s):  
Hua Xiao ◽  
Michael M Vierling ◽  
Rana F Kennedy ◽  
Erin C Boone ◽  
Logan M Decker ◽  
...  

Abstract In Neurospora crassa, expression from an unpaired gene is suppressed by a mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) factors to silence target mRNAs. Here, we report that Neurospora CAR-1 and CGH-1, homologs of two Caenorhabditis elegans RNA granule components, are involved in MSUD. These fungal proteins are found in the perinuclear region and P-bodies, much like their worm counterparts. They interact with components of the meiotic silencing complex (MSC), including the SMS-2 Argonaute. This is the first time MSUD has been linked to RNA granule proteins.

2020 ◽  
Vol 10 (6) ◽  
pp. 1919-1927
Author(s):  
Erin C. Boone ◽  
Hua Xiao ◽  
Michael M. Vierling ◽  
Logan M. Decker ◽  
Victor T. Sy ◽  
...  

In the filamentous fungus Neurospora crassa, genes unpaired during meiosis are silenced by a process known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) proteins, such as Dicer and Argonaute, to target homologous mRNAs for silencing. Previously, we demonstrated that nuclear cap-binding proteins NCBP1 and NCBP2 are involved in MSUD. We report here that SAD-8, a protein similar to human NCBP3, also mediates silencing. Although SAD-8 is not essential for either vegetative or sexual development, it is required for MSUD. SAD-8 localizes predominantly in the nucleus and interacts with both NCBP1 and NCBP2. Similar to NCBP1 and NCBP2, SAD-8 interacts with a component (Argonaute) of the perinuclear meiotic silencing complex (MSC), further implicating the involvement of cap-binding proteins in silencing.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 805-813 ◽  
Author(s):  
Edward S Davis ◽  
Lucia Wille ◽  
Barry A Chestnut ◽  
Penny L Sadler ◽  
Diane C Shakes ◽  
...  

Abstract Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.


2012 ◽  
Vol 23 (16) ◽  
pp. 3111-3121 ◽  
Author(s):  
Virginie Hachet ◽  
Coralie Busso ◽  
Mika Toya ◽  
Asako Sugimoto ◽  
Peter Askjaer ◽  
...  

Regulation of mitosis in time and space is critical for proper cell division. We conducted an RNA interference–based modifier screen to identify novel regulators of mitosis in Caenorhabditis elegans embryos. Of particular interest, this screen revealed that the Nup205 nucleoporin NPP-3 can negatively modulate the timing of mitotic onset. Furthermore, we discovered that NPP-3 and nucleoporins that are associated with it are lost from the nuclear envelope (NE) in the vicinity of centrosomes at the onset of mitosis. We demonstrate that centrosomes are both necessary and sufficient for NPP-3 local loss, which also requires the activity of the Aurora-A kinase AIR-1. Our findings taken together support a model in which centrosomes and AIR-1 promote timely onset of mitosis by locally removing NPP-3 and associated nucleoporins from the NE.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1413-1420 ◽  
Author(s):  
Cellina Cohen-Saidon ◽  
Irit Carmi ◽  
Avishai Keren ◽  
Ehud Razin

In the present study, we demonstrated that the antiapoptotic function of Bcl-2 in mast cells is significantly dependent on its association with the heat shock protein 90β (Hsp90β). Dissociation of these 2 proteins inhibits the antiapoptotic activity of Bcl-2 by initiating the release of cytochrome c from mitochondria into cytosol and increasing the activity of caspase 3 and caspase 7, resulting in mast-cell apoptosis. The antiapoptotic activity of Bcl-2 was greatly affected by knocking-out specifically Hsp90β using the RNA interference approach. Thus, for the first time, it has been shown that Hsp90β might modulate the antiapoptotic activity of Bcl-2 at least in mast cells. These findings could have implications for a novel strategy of regulating apoptosis in patients with mastocytosis and other mast cell–associated diseases.


1985 ◽  
Vol 5 (9) ◽  
pp. 2272-2278
Author(s):  
R A Akins ◽  
A M Lambowitz

We have developed a sib selection procedure for cloning Neurospora crassa nuclear genes by complementation of mutants. This procedure takes advantage of a modified N. crassa transformation procedure that gives as many as 10,000 to 50,000 stable transformants per microgram of DNA with recombinant plasmids containing the N. crassa qa-2+ gene. Here, we describe the use of the sib selection procedure to clone genes corresponding to auxotrophic mutants, nic-1 and inl. The identities of the putative clones were confirmed by mapping their chromosomal locations in standard genetic crosses and using restriction site polymorphisms as genetic markers. Because we can obtain very high N. crassa transformation frequencies, cloning can be accomplished with as few as five subdivisions of an N. crassa genomic library. The sib selection procedure should, for the first time, permit the cloning of any gene corresponding to an N. crassa mutant for which an appropriate selection can be devised. Analogous procedures may be applicable to other filamentous fungi before the development of operational shuttle vectors.


2005 ◽  
Vol 25 (7) ◽  
pp. 2583-2592 ◽  
Author(s):  
Landon L. Moore ◽  
Gerald Stanvitch ◽  
Mark B. Roth ◽  
David Rosen

ABSTRACT Prior to microtubule capture, sister centromeres resolve from one another, coming to rest on opposite surfaces of the condensing chromosome. Subsequent assembly of sister kinetochores at each sister centromere generates a geometry favorable for equal levels of segregation of chromatids. The holocentric chromosomes of Caenorhabditis elegans are uniquely suited for the study of centromere resolution and subsequent kinetochore assembly. In C. elegans, only two proteins have been identified as being necessary for centromere resolution, the kinase AIR-2 (prophase only) and the centromere protein HCP-4/CENP-C. Here we found that the loss of proteins involved in chromosome cohesion bypassed the requirement for HCP-4/CENP-C but not for AIR-2. Interestingly, the loss of cohesin proteins also restored the localization of HCP-6 to the kinetochore. The loss of the condensin II protein HCP-6 or MIX-1/SMC2 impaired centromere resolution. Furthermore, the loss of HCP-6 or MIX-1/SMC2 resulted in no centromere resolution when either nocodazole or RNA interference (RNAi) of the kinetochore protein KNL-1 perturbed spindle-kinetochore interactions. This result suggests that normal prophase centromere resolution is mediated by condensin II proteins, which are actively recruited to sister centromeres to mediate the process of resolution.


2015 ◽  
Author(s):  
◽  
Erin C. Boone

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Meiotic silencing by unpaired DNA (MSUD) is an RNA interference (RNAi) pathway in Neurospora crassa that detects genes without a homologous partner and silences them for the duration of sexual development. In this study, we have further elucidated the function of known MSUD proteins, identified novel proteins that are required for MSUD, and demonstrated the conservation of RNAi-related processes at the nuclear periphery. We began by showing SAD-2 is crucial for the localization of other MSUD proteins in the perinuclear region. These data suggest that SAD-2 works as a scaffold protein and that proper function of MSUD, like other germline RNAi-like systems, is reliant on the presence of silencing proteins in the perinuclear region. An MSUD suppression assay identified two novel MSUD proteins, SAD-Y and SAD-B'. Even though SAD-Y and its homologs contain a conserved putative RNA- binding motif, they have yet to be assigned to a biochemical pathway. Our work here has linked silencing to SAD-Y-like proteins. SAD-Y has been shown to interact with other MSUD factors in both the nucleus and at the nuclear periphery. SAD-B's homolog has been found in the nuage, an epicenter for RNA-binding proteins involved in post-transcriptional regulation for Drosophila germline cells. SAD-B interacts with core MSUD proteins and has an especially intimate association with SMS-2, which requires it for localization. Furthermore, bimolecular fluorescence complementation (BiFC) revealed that SAD-B' interacts with a Golgi retrograde transport protein and an autophagy marker protein, suggesting the importance of the endomembrane system in this RNAi process.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1334 ◽  
Author(s):  
Hyemin Min ◽  
Esther Youn ◽  
Yhong-Hee Shim

During pregnancy, most women are exposed to caffeine, which is a widely consumed psychoactive substance. However, the consequences of maternal caffeine intake on the child remain largely unknown. Here, we investigated the intergenerational effects of maternal caffeine intake on offspring in a Caenorhabditis elegans model. We treated a young mother (P0) with 10 mM of caffeine equivalent to 2–5 cans of commercial energy drinks and examined its reproduction and growth rate from P0 to F2 generation. The fertility decreased and embryonic lethality increased by defective oocytes and eggshell integrity in caffeine-ingested mothers, and F1 larval development severely retarded. These results were due to decreased production of vitellogenin protein (yolk) in caffeine-ingested mothers. Furthermore, effects of RNA interference of vitellogenin (vit) genes, vit-1 to vit-6, in P0 mothers can mimic those by caffeine-ingested mothers. In addition, RNA interference (RNAi) depletion of unc-62 (human Meis homeobox), a transcriptional activator for vit genes, also showed similar effects induced by caffeine intake. Taken together, maternal caffeine intake reduced yolk production mediated by the UNC-62 transcription factor, thereby disrupting oocyte and eggshell integrity and retarding larval development. Our study suggests the clinical significance of caffeine intake for prospective mothers.


2013 ◽  
Vol 56 ◽  
pp. 158-162 ◽  
Author(s):  
T. Nagasowjanya ◽  
Kranthi B. Raj ◽  
K. Sreethi Reddy ◽  
Durgadas P. Kasbekar

Sign in / Sign up

Export Citation Format

Share Document