scholarly journals Dual Transcriptomic Analysis Reveals Metabolic Changes Associated with Differential Persistence of Human Pathogenic Bacteria in Leaves of Arabidopsis and Lettuce

Author(s):  
Cristián Jacob ◽  
André C Velásquez ◽  
Nikhil A Josh ◽  
Matthew Settles ◽  
Sheng Yang He ◽  
...  

Abstract Understanding the molecular determinants underlying the interaction between the leaf and human pathogenic bacteria is key to provide the foundation to develop science-based strategies to prevent or decrease the pathogen contamination of leafy greens. In this study, we conducted a dual RNA-sequencing analysis to simultaneously define changes in the transcriptomic profiles of the plant and the bacterium when they come in contact. We used an economically relevant vegetable crop, lettuce (Lactuca sativa L. cultivar Salinas), and a model plant, Arabidopsis thaliana Col-0, as well as two pathogenic bacterial strains that cause disease outbreaks associated with fresh produce, Escherichia coli O157: H7 and Salmonella enterica serovar Typhimurium 14028 s (STm 14028 s). We observed commonalities and specificities in the modulation of biological processes between Arabidopsis and lettuce and between O157: H7 and STm 14028 s during early stages of the interaction. We detected a larger alteration of gene expression at the whole transcriptome level in lettuce and Arabidopsis at 24 hours post inoculation with STm 14028 s compared to that with O157: H7. In addition, bacterial transcriptomic adjustments were substantially larger in Arabidopsis than in lettuce. Bacterial transcriptome was affected at a larger extent in the first 4 hours compared to the subsequent 20 hours after inoculation. Overall, we gained valuable knowledge about the responses and counter-responses of both bacterial pathogen and plant host when these bacteria are residing in the leaf intercellular space. These findings and the public genomic resources generated in this study are valuable for additional data mining.

2012 ◽  
Vol 506 ◽  
pp. 537-540 ◽  
Author(s):  
S. Sanpa ◽  
Krit Sutjarittangtham ◽  
Tawee Tunkasiri ◽  
Sukum Eitssayeam ◽  
P. Chantawannakul

The antimicrobial activities of propolis against some bacterial strains have been studied. However, there are few reports on biopolymers from propolis. Polycaprolactone (PCL) is a biodegradable polymer that has a long history of use in the biomedical field. In this work, the polymer nanofiber was grown from a Brazillian propolis extract solution on PCL using an electrospinning technique. Antimicrobial activities were investigated by the disc diffusion method. The propolis extract and polymer nanofiber could inhibit some human pathogenic bacteria. In addition, the inhibitory effects on tested microorganism depended on the concentration of propolis extract mixed with the polymer nanofiber. Such properties of the propolis/PCL nanofiners can be further developed for biomedical applications.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Mirco Schmolke ◽  
Jenish R. Patel ◽  
Elisa de Castro ◽  
Maria T. Sánchez-Aparicio ◽  
Melissa B. Uccellini ◽  
...  

ABSTRACT The cytoplasmic helicase RIG-I is an established sensor for viral 5′-triphosphorylated RNA species. Recently, RIG-I was also implicated in the detection of intracellular bacteria. However, little is known about the host cell specificity of this process and the bacterial pathogen-associated molecular pattern (PAMP) that activates RIG-I. Here we show that RNA of Salmonella enterica serovar Typhimurium activates production of beta interferon in a RIG-I-dependent fashion only in nonphagocytic cells. In phagocytic cells, RIG-I is obsolete for detection of Salmonella infection. We further demonstrate that Salmonella mRNA reaches the cytoplasm during infection and is thus accessible for RIG-I. The results from next-generation sequencing analysis of RIG-I-associated RNA suggest that coding bacterial mRNAs represent the activating PAMP. IMPORTANCE S. Typhimurium is a major food-borne pathogen. After fecal-oral transmission, it can infect epithelial cells in the gut as well as immune cells (mainly macrophages, dendritic cells, and M cells). The innate host immune system relies on a growing number of sensors that detect pathogen-associated molecular patterns (PAMPs) to launch a first broad-spectrum response to invading pathogens. Successful detection of a given pathogen depends on colocalization of host sensors and PAMPs as well as potential countermeasures of the pathogen during infection. RIG-I-like helicases were mainly associated with detection of RNA viruses. Our work shows that S. Typhimurium is detected by RIG-I during infection specifically in nonimmune cells.


Author(s):  
SUNDARAMOORTHY MARIMUTHU ◽  
SABARIMANIKANDAN MAHENDRAN

Objective: The objective of the present study was to isolate different antibacterial protein precipitates from Ganoderma lucidum against human pathogenic bacteria and to evaluate suitable precipitating agent. Methods: The acid extract was prepared from the aqueous solution of the test mushroom. From separate aliquots of acid extract, antibacterial proteins were precipitated using five different concentrations (10–50%) of ammonium sulfate solutions, 10% trichloroacetic acid (TCA), 80% ethanol and methanol – Chloroform mixture (2:1 ratio). Protein quantification was performed in each stage of purifications. The as-prepared protein precipitates were subjected for antibacterial and hemolytic assays for identification of the active protein precipitate, which in turn was also checked for minimum inhibitory volume (MIV) for all test organisms. Results: The quantity of each protein precipitated by different protein precipitating agents from the acid extract of the test mushroom was found in the range of 2.3–4.8 mg/g wet.wt. Although all the precipitates showed different levels of antibacterial capacities, 10% TCA precipitate was considered as active protein as it yielded the maximum amount of protein (4.8 mg/g.wet.wt) as well as it exhibited burly bactericidal activities at lower volumes of protein solutions subjected (6.3 and 3.2 μl) on all bacterial strains tested with less hemolytic effects. Conclusion: The protein precipitated by 10% TCA from the acid extract of the test mushroom could be developed as a drug candidate for treating infectious diseases caused by pathogenic microbes in human.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 823
Author(s):  
Na Sun ◽  
Yanying Song ◽  
Cong Liu ◽  
Mengda Liu ◽  
Lanping Yu ◽  
...  

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important intracellular pathogen that poses a health threat to humans. This study tries to clarify the mechanism of Salmonella survival and reproduction in the host. In this study, high-throughput sequencing analysis was performed on RNA extracted from the strains isolated from infected mouse spleens and an S. Typhimurium reference strain (ATCC 14028) based on the BGISEQ-500 platform. A total of 1340 significant differentially expressed genes (DEGs) were screened. Functional annotation revealed DEGs associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Through data mining and literature retrieval, 26 of the 58 upregulated DEGs (FPKM > 10) were not reported to be related to the adaptation to intracellular survival and were classified as candidate key genes (CKGs) for survival and proliferation in vivo. Our data contribute to our understanding of the mechanisms used by Salmonella to regulate virulence gene expression whilst replicating inside mammalian cells.


2010 ◽  
Vol 4 (04) ◽  
pp. 194-201 ◽  
Author(s):  
Lamiaa Bouamamaa ◽  
Antonio Sorlozano ◽  
Amin Laglaoui ◽  
Mariam Lebbadi ◽  
Ahmed Aarab ◽  
...  

Background:  Flies and cockroaches are two insects in close contact with human beings. They are carriers of human pathogenic bacteria on the external areas of their bodies or in their digestive tracts. This study examines Periplaneta americana and Musca domestica collected from the residential areas of six districts in Tangier, Morocco. Methodology: In total, 251 bacteria were isolated from external areas of the participants' bodies and the antimicrobial susceptibility was calculated. Results: The predominant bacterial species included Escherichia coli (17.9%), Klebsiella spp. (14.7%), Providencia spp. (9.6%), Staphylococcus spp. (15.1%) and Enterococcus spp. (11.6%). The study showed no difference between the species of bacterial strains from American cockroaches and houseflies. Carbapenems and aminoglycosides were active against 100% of the Gram-negative bacilli isolated in this study. Staphylococcus spp. strains were susceptible to linezolid, vancomycin, daptomycin, levofloxacin and cotrimoxazole, and no antibiotic resistance was found in Enterococcus spp. Conclusions: In our setting, although both cockroaches and flies collected from residential areas may be vectors of human pathogenic bacteria, the infections caused by them are easily treatable as a result of the high susceptibility of their bacteria to antibiotics routinely used in the community or in hospitals.


Author(s):  
LONG HOANG NGO ◽  
THI HAI YEN NGUYEN ◽  
VU KHAC TRAN ◽  
VU VAN DOAN ◽  
MINH VAN NGUYEN ◽  
...  

Objectives: Infectious diseases caused by bacteria are a leading cause of death worldwide. Hence, the objectives of the study are aimed to evaluate the antibacterial activity against five human pathogenic bacteria of methanolic extracts from 66 plants collected from Vietnam. Methods: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of methanol extracts of 66 plant species against five bacterial strains. Results: In this study, all the plant extracts were active against at least one train with MIC values ranging from 24 to 2048 μg/mL. Twenty-five plant extracts were active against all three Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus). Of these, the extracts of Macaranga trichocarpa (Rchb. f. and Zoll.) Mull. Arg. (Euphorbiaceae), Calophyllum inophyllum L. (Clusiaceae) and Caryodaphnopsis baviensis (Lecomte) Airy Shaw (Lauraceae) exhibited the highest antibacterial activity (MIC =24–128 μg/mL), followed by extracts of Betula alnoides Buch.- Ham. e × . D. Don (Betulaceae), Acronychia pedunculata (L.) Miq. (Rutaceae), Croton alpinus A. Chev. ex Gagnep. (Euphorbiaceae) (MIC =64–256 μg/mL). Furthermore, the extract of Rhus chinensis Mill. (Anacardiaceae) and Annona reticulata L. (Annonaceae) exhibited potent antibacterial activity against the two Bacillus species (MIC =32–64 μg/mL). Conclusion: Results of this study reveal that plant extracts from Vietnam have highly antibacterial activity against Gram-positive bacteria. These results suggest that Vietnamese plant extracts may be a rich source of antibacterial drugs.


2015 ◽  
Vol 7 (2) ◽  
pp. 666-671 ◽  
Author(s):  
Nitish Bansal ◽  
R. K. Gupta ◽  
Dharambir Singh ◽  
Shashank Shashank

Disease outbreaks are being increasingly recognized as a significant constraint on aquaculture production and trade affecting the economic development of the sector in many countries. Extracting and using biologically active compounds from earthworms has traditionally been practiced by indigenous people throughout the world. The aim of the present study was to shown antimicrobial activity through earthworm extract against fish bacterial pathogens. In total, 8 bacterial strains i.e. 6 gram negative viz. Aeromonas hydrophila, Pseudomonas aeruginosa, P. fluorescens, E.coli, Enterobacter aerogens and Shigella sp. and 2 gram positive viz. Staphylococcus aureus and Micrococcus luteus were identified. The extract of earthworm Perionyx excavatus, Pheretima posthuma were prepared and antimicrobial activity of the extract was determined by antimicrobial well diffusion assay. After 24 hrs of incubation period, it was observed that earthworm extract showed antibacterial activity against isolated bacterial strains. Among earthworm extract of two different species, the maximum zone of inhibition was shown against A. hydrophila by Perionyx excavatus (18.33± 0.66 mm) and P. posthuma (16.66±0.33). P. excavatus showed antibacterial activity against all pathogenic bacteria except Shigella spp. However on the other hand, P.posthuma showed antibacterial activity against A. hydrophila, P. fluorescens, E.coli, and S. aureus. The study has proved that earthworm extract can be effectively used for suppression of bacterial infection in fishes and that it can used as potential antimicrobial drug against commercial antibiotic resistance bacteria.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document